Step |
Hyp |
Ref |
Expression |
1 |
|
r1plmhm.1 |
|- P = ( Poly1 ` R ) |
2 |
|
r1plmhm.2 |
|- U = ( Base ` P ) |
3 |
|
r1plmhm.4 |
|- E = ( rem1p ` R ) |
4 |
|
r1plmhm.5 |
|- N = ( Unic1p ` R ) |
5 |
|
r1plmhm.6 |
|- F = ( f e. U |-> ( f E M ) ) |
6 |
|
r1plmhm.9 |
|- ( ph -> R e. Ring ) |
7 |
|
r1plmhm.10 |
|- ( ph -> M e. N ) |
8 |
|
r1pquslmic.0 |
|- .0. = ( 0g ` P ) |
9 |
|
r1pquslmic.k |
|- K = ( `' F " { .0. } ) |
10 |
|
r1pquslmic.q |
|- Q = ( P /s ( P ~QG K ) ) |
11 |
|
eqidd |
|- ( ph -> ( F "s P ) = ( F "s P ) ) |
12 |
2
|
a1i |
|- ( ph -> U = ( Base ` P ) ) |
13 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
14 |
6
|
adantr |
|- ( ( ph /\ f e. U ) -> R e. Ring ) |
15 |
|
simpr |
|- ( ( ph /\ f e. U ) -> f e. U ) |
16 |
7
|
adantr |
|- ( ( ph /\ f e. U ) -> M e. N ) |
17 |
3 1 2 4
|
r1pcl |
|- ( ( R e. Ring /\ f e. U /\ M e. N ) -> ( f E M ) e. U ) |
18 |
14 15 16 17
|
syl3anc |
|- ( ( ph /\ f e. U ) -> ( f E M ) e. U ) |
19 |
18 5
|
fmptd |
|- ( ph -> F : U --> U ) |
20 |
|
fimadmfo |
|- ( F : U --> U -> F : U -onto-> ( F " U ) ) |
21 |
19 20
|
syl |
|- ( ph -> F : U -onto-> ( F " U ) ) |
22 |
|
anass |
|- ( ( ( ph /\ a e. U ) /\ b e. U ) <-> ( ph /\ ( a e. U /\ b e. U ) ) ) |
23 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` a ) = ( F ` f ) ) |
24 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` b ) = ( F ` q ) ) |
25 |
23 24
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( ( F ` a ) ( +g ` ( F "s P ) ) ( F ` b ) ) = ( ( F ` f ) ( +g ` ( F "s P ) ) ( F ` q ) ) ) |
26 |
1 2 3 4 5 6 7
|
r1plmhm |
|- ( ph -> F e. ( P LMHom ( F "s P ) ) ) |
27 |
26
|
lmhmghmd |
|- ( ph -> F e. ( P GrpHom ( F "s P ) ) ) |
28 |
27
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> F e. ( P GrpHom ( F "s P ) ) ) |
29 |
|
simp-6r |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> a e. U ) |
30 |
|
simp-5r |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> b e. U ) |
31 |
|
eqid |
|- ( +g ` ( F "s P ) ) = ( +g ` ( F "s P ) ) |
32 |
2 13 31
|
ghmlin |
|- ( ( F e. ( P GrpHom ( F "s P ) ) /\ a e. U /\ b e. U ) -> ( F ` ( a ( +g ` P ) b ) ) = ( ( F ` a ) ( +g ` ( F "s P ) ) ( F ` b ) ) ) |
33 |
28 29 30 32
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( ( F ` a ) ( +g ` ( F "s P ) ) ( F ` b ) ) ) |
34 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> f e. U ) |
35 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> q e. U ) |
36 |
2 13 31
|
ghmlin |
|- ( ( F e. ( P GrpHom ( F "s P ) ) /\ f e. U /\ q e. U ) -> ( F ` ( f ( +g ` P ) q ) ) = ( ( F ` f ) ( +g ` ( F "s P ) ) ( F ` q ) ) ) |
37 |
28 34 35 36
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( f ( +g ` P ) q ) ) = ( ( F ` f ) ( +g ` ( F "s P ) ) ( F ` q ) ) ) |
38 |
25 33 37
|
3eqtr4d |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( f ( +g ` P ) q ) ) ) |
39 |
38
|
expl |
|- ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) -> ( ( ( F ` a ) = ( F ` f ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( f ( +g ` P ) q ) ) ) ) |
40 |
39
|
anasss |
|- ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ ( f e. U /\ q e. U ) ) -> ( ( ( F ` a ) = ( F ` f ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( f ( +g ` P ) q ) ) ) ) |
41 |
22 40
|
sylanbr |
|- ( ( ( ph /\ ( a e. U /\ b e. U ) ) /\ ( f e. U /\ q e. U ) ) -> ( ( ( F ` a ) = ( F ` f ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( f ( +g ` P ) q ) ) ) ) |
42 |
41
|
3impa |
|- ( ( ph /\ ( a e. U /\ b e. U ) /\ ( f e. U /\ q e. U ) ) -> ( ( ( F ` a ) = ( F ` f ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( f ( +g ` P ) q ) ) ) ) |
43 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
44 |
6 43
|
syl |
|- ( ph -> P e. Ring ) |
45 |
44
|
ringgrpd |
|- ( ph -> P e. Grp ) |
46 |
45
|
grpmndd |
|- ( ph -> P e. Mnd ) |
47 |
11 12 13 21 42 46 8
|
imasmnd |
|- ( ph -> ( ( F "s P ) e. Mnd /\ ( F ` .0. ) = ( 0g ` ( F "s P ) ) ) ) |
48 |
47
|
simprd |
|- ( ph -> ( F ` .0. ) = ( 0g ` ( F "s P ) ) ) |
49 |
|
oveq1 |
|- ( f = .0. -> ( f E M ) = ( .0. E M ) ) |
50 |
1 2 4 3 6 7 8
|
r1p0 |
|- ( ph -> ( .0. E M ) = .0. ) |
51 |
49 50
|
sylan9eqr |
|- ( ( ph /\ f = .0. ) -> ( f E M ) = .0. ) |
52 |
2 8
|
ring0cl |
|- ( P e. Ring -> .0. e. U ) |
53 |
44 52
|
syl |
|- ( ph -> .0. e. U ) |
54 |
5 51 53 53
|
fvmptd2 |
|- ( ph -> ( F ` .0. ) = .0. ) |
55 |
48 54
|
eqtr3d |
|- ( ph -> ( 0g ` ( F "s P ) ) = .0. ) |
56 |
55
|
sneqd |
|- ( ph -> { ( 0g ` ( F "s P ) ) } = { .0. } ) |
57 |
56
|
imaeq2d |
|- ( ph -> ( `' F " { ( 0g ` ( F "s P ) ) } ) = ( `' F " { .0. } ) ) |
58 |
57 9
|
eqtr4di |
|- ( ph -> ( `' F " { ( 0g ` ( F "s P ) ) } ) = K ) |
59 |
58
|
oveq2d |
|- ( ph -> ( P ~QG ( `' F " { ( 0g ` ( F "s P ) ) } ) ) = ( P ~QG K ) ) |
60 |
59
|
oveq2d |
|- ( ph -> ( P /s ( P ~QG ( `' F " { ( 0g ` ( F "s P ) ) } ) ) ) = ( P /s ( P ~QG K ) ) ) |
61 |
60 10
|
eqtr4di |
|- ( ph -> ( P /s ( P ~QG ( `' F " { ( 0g ` ( F "s P ) ) } ) ) ) = Q ) |
62 |
|
eqid |
|- ( 0g ` ( F "s P ) ) = ( 0g ` ( F "s P ) ) |
63 |
|
eqid |
|- ( `' F " { ( 0g ` ( F "s P ) ) } ) = ( `' F " { ( 0g ` ( F "s P ) ) } ) |
64 |
|
eqid |
|- ( P /s ( P ~QG ( `' F " { ( 0g ` ( F "s P ) ) } ) ) ) = ( P /s ( P ~QG ( `' F " { ( 0g ` ( F "s P ) ) } ) ) ) |
65 |
19
|
ffnd |
|- ( ph -> F Fn U ) |
66 |
|
fnima |
|- ( F Fn U -> ( F " U ) = ran F ) |
67 |
65 66
|
syl |
|- ( ph -> ( F " U ) = ran F ) |
68 |
1
|
fvexi |
|- P e. _V |
69 |
68
|
a1i |
|- ( ph -> P e. _V ) |
70 |
11 12 21 69
|
imasbas |
|- ( ph -> ( F " U ) = ( Base ` ( F "s P ) ) ) |
71 |
67 70
|
eqtr3d |
|- ( ph -> ran F = ( Base ` ( F "s P ) ) ) |
72 |
62 26 63 64 71
|
lmicqusker |
|- ( ph -> ( P /s ( P ~QG ( `' F " { ( 0g ` ( F "s P ) ) } ) ) ) ~=m ( F "s P ) ) |
73 |
61 72
|
eqbrtrrd |
|- ( ph -> Q ~=m ( F "s P ) ) |