Step |
Hyp |
Ref |
Expression |
1 |
|
rankpwi |
|- ( A e. U. ( R1 " On ) -> ( rank ` ~P A ) = suc ( rank ` A ) ) |
2 |
1
|
eleq1d |
|- ( A e. U. ( R1 " On ) -> ( ( rank ` ~P A ) e. suc B <-> suc ( rank ` A ) e. suc B ) ) |
3 |
|
eloni |
|- ( B e. On -> Ord B ) |
4 |
|
ordsucelsuc |
|- ( Ord B -> ( ( rank ` A ) e. B <-> suc ( rank ` A ) e. suc B ) ) |
5 |
3 4
|
syl |
|- ( B e. On -> ( ( rank ` A ) e. B <-> suc ( rank ` A ) e. suc B ) ) |
6 |
5
|
bicomd |
|- ( B e. On -> ( suc ( rank ` A ) e. suc B <-> ( rank ` A ) e. B ) ) |
7 |
2 6
|
sylan9bb |
|- ( ( A e. U. ( R1 " On ) /\ B e. On ) -> ( ( rank ` ~P A ) e. suc B <-> ( rank ` A ) e. B ) ) |
8 |
|
pwwf |
|- ( A e. U. ( R1 " On ) <-> ~P A e. U. ( R1 " On ) ) |
9 |
8
|
biimpi |
|- ( A e. U. ( R1 " On ) -> ~P A e. U. ( R1 " On ) ) |
10 |
|
suceloni |
|- ( B e. On -> suc B e. On ) |
11 |
|
r1fnon |
|- R1 Fn On |
12 |
11
|
fndmi |
|- dom R1 = On |
13 |
10 12
|
eleqtrrdi |
|- ( B e. On -> suc B e. dom R1 ) |
14 |
|
rankr1ag |
|- ( ( ~P A e. U. ( R1 " On ) /\ suc B e. dom R1 ) -> ( ~P A e. ( R1 ` suc B ) <-> ( rank ` ~P A ) e. suc B ) ) |
15 |
9 13 14
|
syl2an |
|- ( ( A e. U. ( R1 " On ) /\ B e. On ) -> ( ~P A e. ( R1 ` suc B ) <-> ( rank ` ~P A ) e. suc B ) ) |
16 |
12
|
eleq2i |
|- ( B e. dom R1 <-> B e. On ) |
17 |
|
rankr1ag |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` B ) <-> ( rank ` A ) e. B ) ) |
18 |
16 17
|
sylan2br |
|- ( ( A e. U. ( R1 " On ) /\ B e. On ) -> ( A e. ( R1 ` B ) <-> ( rank ` A ) e. B ) ) |
19 |
7 15 18
|
3bitr4rd |
|- ( ( A e. U. ( R1 " On ) /\ B e. On ) -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) |
20 |
19
|
ex |
|- ( A e. U. ( R1 " On ) -> ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) |
21 |
|
r1elwf |
|- ( A e. ( R1 ` B ) -> A e. U. ( R1 " On ) ) |
22 |
|
r1elwf |
|- ( ~P A e. ( R1 ` suc B ) -> ~P A e. U. ( R1 " On ) ) |
23 |
|
r1elssi |
|- ( ~P A e. U. ( R1 " On ) -> ~P A C_ U. ( R1 " On ) ) |
24 |
22 23
|
syl |
|- ( ~P A e. ( R1 ` suc B ) -> ~P A C_ U. ( R1 " On ) ) |
25 |
|
ssid |
|- A C_ A |
26 |
|
pwexr |
|- ( ~P A e. ( R1 ` suc B ) -> A e. _V ) |
27 |
|
elpwg |
|- ( A e. _V -> ( A e. ~P A <-> A C_ A ) ) |
28 |
26 27
|
syl |
|- ( ~P A e. ( R1 ` suc B ) -> ( A e. ~P A <-> A C_ A ) ) |
29 |
25 28
|
mpbiri |
|- ( ~P A e. ( R1 ` suc B ) -> A e. ~P A ) |
30 |
24 29
|
sseldd |
|- ( ~P A e. ( R1 ` suc B ) -> A e. U. ( R1 " On ) ) |
31 |
21 30
|
pm5.21ni |
|- ( -. A e. U. ( R1 " On ) -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) |
32 |
31
|
a1d |
|- ( -. A e. U. ( R1 " On ) -> ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) |
33 |
20 32
|
pm2.61i |
|- ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) |