Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
|- ( x = A -> ( x e. ( R1 ` B ) <-> A e. ( R1 ` B ) ) ) |
2 |
|
pweq |
|- ( x = A -> ~P x = ~P A ) |
3 |
2
|
eleq1d |
|- ( x = A -> ( ~P x e. ( R1 ` suc B ) <-> ~P A e. ( R1 ` suc B ) ) ) |
4 |
1 3
|
bibi12d |
|- ( x = A -> ( ( x e. ( R1 ` B ) <-> ~P x e. ( R1 ` suc B ) ) <-> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) |
5 |
4
|
imbi2d |
|- ( x = A -> ( ( B e. On -> ( x e. ( R1 ` B ) <-> ~P x e. ( R1 ` suc B ) ) ) <-> ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) ) |
6 |
|
vex |
|- x e. _V |
7 |
6
|
rankr1a |
|- ( B e. On -> ( x e. ( R1 ` B ) <-> ( rank ` x ) e. B ) ) |
8 |
|
eloni |
|- ( B e. On -> Ord B ) |
9 |
|
ordsucelsuc |
|- ( Ord B -> ( ( rank ` x ) e. B <-> suc ( rank ` x ) e. suc B ) ) |
10 |
8 9
|
syl |
|- ( B e. On -> ( ( rank ` x ) e. B <-> suc ( rank ` x ) e. suc B ) ) |
11 |
7 10
|
bitrd |
|- ( B e. On -> ( x e. ( R1 ` B ) <-> suc ( rank ` x ) e. suc B ) ) |
12 |
6
|
rankpw |
|- ( rank ` ~P x ) = suc ( rank ` x ) |
13 |
12
|
eleq1i |
|- ( ( rank ` ~P x ) e. suc B <-> suc ( rank ` x ) e. suc B ) |
14 |
11 13
|
bitr4di |
|- ( B e. On -> ( x e. ( R1 ` B ) <-> ( rank ` ~P x ) e. suc B ) ) |
15 |
|
suceloni |
|- ( B e. On -> suc B e. On ) |
16 |
6
|
pwex |
|- ~P x e. _V |
17 |
16
|
rankr1a |
|- ( suc B e. On -> ( ~P x e. ( R1 ` suc B ) <-> ( rank ` ~P x ) e. suc B ) ) |
18 |
15 17
|
syl |
|- ( B e. On -> ( ~P x e. ( R1 ` suc B ) <-> ( rank ` ~P x ) e. suc B ) ) |
19 |
14 18
|
bitr4d |
|- ( B e. On -> ( x e. ( R1 ` B ) <-> ~P x e. ( R1 ` suc B ) ) ) |
20 |
5 19
|
vtoclg |
|- ( A e. _V -> ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) |
21 |
|
elex |
|- ( A e. ( R1 ` B ) -> A e. _V ) |
22 |
|
elex |
|- ( ~P A e. ( R1 ` suc B ) -> ~P A e. _V ) |
23 |
|
pwexb |
|- ( A e. _V <-> ~P A e. _V ) |
24 |
22 23
|
sylibr |
|- ( ~P A e. ( R1 ` suc B ) -> A e. _V ) |
25 |
21 24
|
pm5.21ni |
|- ( -. A e. _V -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) |
26 |
25
|
a1d |
|- ( -. A e. _V -> ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) |
27 |
20 26
|
pm2.61i |
|- ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) |