| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
| 2 |
1
|
simpri |
|- Lim dom R1 |
| 3 |
|
limord |
|- ( Lim dom R1 -> Ord dom R1 ) |
| 4 |
2 3
|
ax-mp |
|- Ord dom R1 |
| 5 |
|
ordsson |
|- ( Ord dom R1 -> dom R1 C_ On ) |
| 6 |
4 5
|
ax-mp |
|- dom R1 C_ On |
| 7 |
|
elfvdm |
|- ( A e. ( R1 ` B ) -> B e. dom R1 ) |
| 8 |
6 7
|
sselid |
|- ( A e. ( R1 ` B ) -> B e. On ) |
| 9 |
|
onzsl |
|- ( B e. On <-> ( B = (/) \/ E. x e. On B = suc x \/ ( B e. _V /\ Lim B ) ) ) |
| 10 |
8 9
|
sylib |
|- ( A e. ( R1 ` B ) -> ( B = (/) \/ E. x e. On B = suc x \/ ( B e. _V /\ Lim B ) ) ) |
| 11 |
|
noel |
|- -. A e. (/) |
| 12 |
|
fveq2 |
|- ( B = (/) -> ( R1 ` B ) = ( R1 ` (/) ) ) |
| 13 |
|
r10 |
|- ( R1 ` (/) ) = (/) |
| 14 |
12 13
|
eqtrdi |
|- ( B = (/) -> ( R1 ` B ) = (/) ) |
| 15 |
14
|
eleq2d |
|- ( B = (/) -> ( A e. ( R1 ` B ) <-> A e. (/) ) ) |
| 16 |
15
|
biimpcd |
|- ( A e. ( R1 ` B ) -> ( B = (/) -> A e. (/) ) ) |
| 17 |
11 16
|
mtoi |
|- ( A e. ( R1 ` B ) -> -. B = (/) ) |
| 18 |
17
|
pm2.21d |
|- ( A e. ( R1 ` B ) -> ( B = (/) -> ~P A C_ ( R1 ` B ) ) ) |
| 19 |
|
simpl |
|- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> A e. ( R1 ` B ) ) |
| 20 |
|
simpr |
|- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> B = suc x ) |
| 21 |
20
|
fveq2d |
|- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> ( R1 ` B ) = ( R1 ` suc x ) ) |
| 22 |
7
|
adantr |
|- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> B e. dom R1 ) |
| 23 |
20 22
|
eqeltrrd |
|- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> suc x e. dom R1 ) |
| 24 |
|
limsuc |
|- ( Lim dom R1 -> ( x e. dom R1 <-> suc x e. dom R1 ) ) |
| 25 |
2 24
|
ax-mp |
|- ( x e. dom R1 <-> suc x e. dom R1 ) |
| 26 |
23 25
|
sylibr |
|- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> x e. dom R1 ) |
| 27 |
|
r1sucg |
|- ( x e. dom R1 -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
| 28 |
26 27
|
syl |
|- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
| 29 |
21 28
|
eqtrd |
|- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> ( R1 ` B ) = ~P ( R1 ` x ) ) |
| 30 |
19 29
|
eleqtrd |
|- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> A e. ~P ( R1 ` x ) ) |
| 31 |
|
elpwi |
|- ( A e. ~P ( R1 ` x ) -> A C_ ( R1 ` x ) ) |
| 32 |
|
sspw |
|- ( A C_ ( R1 ` x ) -> ~P A C_ ~P ( R1 ` x ) ) |
| 33 |
30 31 32
|
3syl |
|- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> ~P A C_ ~P ( R1 ` x ) ) |
| 34 |
33 29
|
sseqtrrd |
|- ( ( A e. ( R1 ` B ) /\ B = suc x ) -> ~P A C_ ( R1 ` B ) ) |
| 35 |
34
|
ex |
|- ( A e. ( R1 ` B ) -> ( B = suc x -> ~P A C_ ( R1 ` B ) ) ) |
| 36 |
35
|
rexlimdvw |
|- ( A e. ( R1 ` B ) -> ( E. x e. On B = suc x -> ~P A C_ ( R1 ` B ) ) ) |
| 37 |
|
r1tr |
|- Tr ( R1 ` B ) |
| 38 |
|
simpl |
|- ( ( A e. ( R1 ` B ) /\ Lim B ) -> A e. ( R1 ` B ) ) |
| 39 |
|
r1limg |
|- ( ( B e. dom R1 /\ Lim B ) -> ( R1 ` B ) = U_ x e. B ( R1 ` x ) ) |
| 40 |
7 39
|
sylan |
|- ( ( A e. ( R1 ` B ) /\ Lim B ) -> ( R1 ` B ) = U_ x e. B ( R1 ` x ) ) |
| 41 |
38 40
|
eleqtrd |
|- ( ( A e. ( R1 ` B ) /\ Lim B ) -> A e. U_ x e. B ( R1 ` x ) ) |
| 42 |
|
eliun |
|- ( A e. U_ x e. B ( R1 ` x ) <-> E. x e. B A e. ( R1 ` x ) ) |
| 43 |
41 42
|
sylib |
|- ( ( A e. ( R1 ` B ) /\ Lim B ) -> E. x e. B A e. ( R1 ` x ) ) |
| 44 |
|
simprl |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> x e. B ) |
| 45 |
|
limsuc |
|- ( Lim B -> ( x e. B <-> suc x e. B ) ) |
| 46 |
45
|
ad2antlr |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ( x e. B <-> suc x e. B ) ) |
| 47 |
44 46
|
mpbid |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> suc x e. B ) |
| 48 |
|
limsuc |
|- ( Lim B -> ( suc x e. B <-> suc suc x e. B ) ) |
| 49 |
48
|
ad2antlr |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ( suc x e. B <-> suc suc x e. B ) ) |
| 50 |
47 49
|
mpbid |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> suc suc x e. B ) |
| 51 |
|
r1tr |
|- Tr ( R1 ` x ) |
| 52 |
|
simprr |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> A e. ( R1 ` x ) ) |
| 53 |
|
trss |
|- ( Tr ( R1 ` x ) -> ( A e. ( R1 ` x ) -> A C_ ( R1 ` x ) ) ) |
| 54 |
51 52 53
|
mpsyl |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> A C_ ( R1 ` x ) ) |
| 55 |
54 32
|
syl |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ~P A C_ ~P ( R1 ` x ) ) |
| 56 |
7
|
ad2antrr |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> B e. dom R1 ) |
| 57 |
|
ordtr1 |
|- ( Ord dom R1 -> ( ( x e. B /\ B e. dom R1 ) -> x e. dom R1 ) ) |
| 58 |
4 57
|
ax-mp |
|- ( ( x e. B /\ B e. dom R1 ) -> x e. dom R1 ) |
| 59 |
44 56 58
|
syl2anc |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> x e. dom R1 ) |
| 60 |
59 27
|
syl |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
| 61 |
55 60
|
sseqtrrd |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ~P A C_ ( R1 ` suc x ) ) |
| 62 |
|
fvex |
|- ( R1 ` suc x ) e. _V |
| 63 |
62
|
elpw2 |
|- ( ~P A e. ~P ( R1 ` suc x ) <-> ~P A C_ ( R1 ` suc x ) ) |
| 64 |
61 63
|
sylibr |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ~P A e. ~P ( R1 ` suc x ) ) |
| 65 |
59 25
|
sylib |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> suc x e. dom R1 ) |
| 66 |
|
r1sucg |
|- ( suc x e. dom R1 -> ( R1 ` suc suc x ) = ~P ( R1 ` suc x ) ) |
| 67 |
65 66
|
syl |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ( R1 ` suc suc x ) = ~P ( R1 ` suc x ) ) |
| 68 |
64 67
|
eleqtrrd |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> ~P A e. ( R1 ` suc suc x ) ) |
| 69 |
|
fveq2 |
|- ( y = suc suc x -> ( R1 ` y ) = ( R1 ` suc suc x ) ) |
| 70 |
69
|
eleq2d |
|- ( y = suc suc x -> ( ~P A e. ( R1 ` y ) <-> ~P A e. ( R1 ` suc suc x ) ) ) |
| 71 |
70
|
rspcev |
|- ( ( suc suc x e. B /\ ~P A e. ( R1 ` suc suc x ) ) -> E. y e. B ~P A e. ( R1 ` y ) ) |
| 72 |
50 68 71
|
syl2anc |
|- ( ( ( A e. ( R1 ` B ) /\ Lim B ) /\ ( x e. B /\ A e. ( R1 ` x ) ) ) -> E. y e. B ~P A e. ( R1 ` y ) ) |
| 73 |
43 72
|
rexlimddv |
|- ( ( A e. ( R1 ` B ) /\ Lim B ) -> E. y e. B ~P A e. ( R1 ` y ) ) |
| 74 |
|
eliun |
|- ( ~P A e. U_ y e. B ( R1 ` y ) <-> E. y e. B ~P A e. ( R1 ` y ) ) |
| 75 |
73 74
|
sylibr |
|- ( ( A e. ( R1 ` B ) /\ Lim B ) -> ~P A e. U_ y e. B ( R1 ` y ) ) |
| 76 |
|
r1limg |
|- ( ( B e. dom R1 /\ Lim B ) -> ( R1 ` B ) = U_ y e. B ( R1 ` y ) ) |
| 77 |
7 76
|
sylan |
|- ( ( A e. ( R1 ` B ) /\ Lim B ) -> ( R1 ` B ) = U_ y e. B ( R1 ` y ) ) |
| 78 |
75 77
|
eleqtrrd |
|- ( ( A e. ( R1 ` B ) /\ Lim B ) -> ~P A e. ( R1 ` B ) ) |
| 79 |
|
trss |
|- ( Tr ( R1 ` B ) -> ( ~P A e. ( R1 ` B ) -> ~P A C_ ( R1 ` B ) ) ) |
| 80 |
37 78 79
|
mpsyl |
|- ( ( A e. ( R1 ` B ) /\ Lim B ) -> ~P A C_ ( R1 ` B ) ) |
| 81 |
80
|
ex |
|- ( A e. ( R1 ` B ) -> ( Lim B -> ~P A C_ ( R1 ` B ) ) ) |
| 82 |
81
|
adantld |
|- ( A e. ( R1 ` B ) -> ( ( B e. _V /\ Lim B ) -> ~P A C_ ( R1 ` B ) ) ) |
| 83 |
18 36 82
|
3jaod |
|- ( A e. ( R1 ` B ) -> ( ( B = (/) \/ E. x e. On B = suc x \/ ( B e. _V /\ Lim B ) ) -> ~P A C_ ( R1 ` B ) ) ) |
| 84 |
10 83
|
mpd |
|- ( A e. ( R1 ` B ) -> ~P A C_ ( R1 ` B ) ) |