Description: Any set is a subset of the hierarchy of its rank. (Contributed by NM, 14-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | r1rankid | |- ( A e. V -> A C_ ( R1 ` ( rank ` A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |- ( A e. V -> A e. _V ) |
|
2 | unir1 | |- U. ( R1 " On ) = _V |
|
3 | 1 2 | eleqtrrdi | |- ( A e. V -> A e. U. ( R1 " On ) ) |
4 | r1rankidb | |- ( A e. U. ( R1 " On ) -> A C_ ( R1 ` ( rank ` A ) ) ) |
|
5 | 3 4 | syl | |- ( A e. V -> A C_ ( R1 ` ( rank ` A ) ) ) |