Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1sscl | |- ( ( A e. ( R1 ` B ) /\ C C_ A ) -> C e. ( R1 ` B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r1pwss | |- ( A e. ( R1 ` B ) -> ~P A C_ ( R1 ` B ) ) | |
| 2 | 1 | adantr | |- ( ( A e. ( R1 ` B ) /\ C C_ A ) -> ~P A C_ ( R1 ` B ) ) | 
| 3 | elpw2g | |- ( A e. ( R1 ` B ) -> ( C e. ~P A <-> C C_ A ) ) | |
| 4 | 3 | biimpar | |- ( ( A e. ( R1 ` B ) /\ C C_ A ) -> C e. ~P A ) | 
| 5 | 2 4 | sseldd | |- ( ( A e. ( R1 ` B ) /\ C C_ A ) -> C e. ( R1 ` B ) ) |