Metamath Proof Explorer


Theorem r1sscl

Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1sscl
|- ( ( A e. ( R1 ` B ) /\ C C_ A ) -> C e. ( R1 ` B ) )

Proof

Step Hyp Ref Expression
1 r1pwss
 |-  ( A e. ( R1 ` B ) -> ~P A C_ ( R1 ` B ) )
2 1 adantr
 |-  ( ( A e. ( R1 ` B ) /\ C C_ A ) -> ~P A C_ ( R1 ` B ) )
3 elpw2g
 |-  ( A e. ( R1 ` B ) -> ( C e. ~P A <-> C C_ A ) )
4 3 biimpar
 |-  ( ( A e. ( R1 ` B ) /\ C C_ A ) -> C e. ~P A )
5 2 4 sseldd
 |-  ( ( A e. ( R1 ` B ) /\ C C_ A ) -> C e. ( R1 ` B ) )