Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | r1sscl | |- ( ( A e. ( R1 ` B ) /\ C C_ A ) -> C e. ( R1 ` B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1pwss | |- ( A e. ( R1 ` B ) -> ~P A C_ ( R1 ` B ) ) |
|
2 | 1 | adantr | |- ( ( A e. ( R1 ` B ) /\ C C_ A ) -> ~P A C_ ( R1 ` B ) ) |
3 | elpw2g | |- ( A e. ( R1 ` B ) -> ( C e. ~P A <-> C C_ A ) ) |
|
4 | 3 | biimpar | |- ( ( A e. ( R1 ` B ) /\ C C_ A ) -> C e. ~P A ) |
5 | 2 4 | sseldd | |- ( ( A e. ( R1 ` B ) /\ C C_ A ) -> C e. ( R1 ` B ) ) |