Step |
Hyp |
Ref |
Expression |
1 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
2 |
1
|
simpri |
|- Lim dom R1 |
3 |
|
limord |
|- ( Lim dom R1 -> Ord dom R1 ) |
4 |
|
ordsson |
|- ( Ord dom R1 -> dom R1 C_ On ) |
5 |
2 3 4
|
mp2b |
|- dom R1 C_ On |
6 |
5
|
sseli |
|- ( A e. dom R1 -> A e. On ) |
7 |
|
fveq2 |
|- ( x = (/) -> ( R1 ` x ) = ( R1 ` (/) ) ) |
8 |
|
r10 |
|- ( R1 ` (/) ) = (/) |
9 |
7 8
|
eqtrdi |
|- ( x = (/) -> ( R1 ` x ) = (/) ) |
10 |
|
treq |
|- ( ( R1 ` x ) = (/) -> ( Tr ( R1 ` x ) <-> Tr (/) ) ) |
11 |
9 10
|
syl |
|- ( x = (/) -> ( Tr ( R1 ` x ) <-> Tr (/) ) ) |
12 |
|
fveq2 |
|- ( x = y -> ( R1 ` x ) = ( R1 ` y ) ) |
13 |
|
treq |
|- ( ( R1 ` x ) = ( R1 ` y ) -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` y ) ) ) |
14 |
12 13
|
syl |
|- ( x = y -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` y ) ) ) |
15 |
|
fveq2 |
|- ( x = suc y -> ( R1 ` x ) = ( R1 ` suc y ) ) |
16 |
|
treq |
|- ( ( R1 ` x ) = ( R1 ` suc y ) -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` suc y ) ) ) |
17 |
15 16
|
syl |
|- ( x = suc y -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` suc y ) ) ) |
18 |
|
fveq2 |
|- ( x = A -> ( R1 ` x ) = ( R1 ` A ) ) |
19 |
|
treq |
|- ( ( R1 ` x ) = ( R1 ` A ) -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` A ) ) ) |
20 |
18 19
|
syl |
|- ( x = A -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` A ) ) ) |
21 |
|
tr0 |
|- Tr (/) |
22 |
|
limsuc |
|- ( Lim dom R1 -> ( y e. dom R1 <-> suc y e. dom R1 ) ) |
23 |
2 22
|
ax-mp |
|- ( y e. dom R1 <-> suc y e. dom R1 ) |
24 |
|
simpr |
|- ( ( y e. On /\ Tr ( R1 ` y ) ) -> Tr ( R1 ` y ) ) |
25 |
|
pwtr |
|- ( Tr ( R1 ` y ) <-> Tr ~P ( R1 ` y ) ) |
26 |
24 25
|
sylib |
|- ( ( y e. On /\ Tr ( R1 ` y ) ) -> Tr ~P ( R1 ` y ) ) |
27 |
|
r1sucg |
|- ( y e. dom R1 -> ( R1 ` suc y ) = ~P ( R1 ` y ) ) |
28 |
|
treq |
|- ( ( R1 ` suc y ) = ~P ( R1 ` y ) -> ( Tr ( R1 ` suc y ) <-> Tr ~P ( R1 ` y ) ) ) |
29 |
27 28
|
syl |
|- ( y e. dom R1 -> ( Tr ( R1 ` suc y ) <-> Tr ~P ( R1 ` y ) ) ) |
30 |
26 29
|
syl5ibrcom |
|- ( ( y e. On /\ Tr ( R1 ` y ) ) -> ( y e. dom R1 -> Tr ( R1 ` suc y ) ) ) |
31 |
23 30
|
syl5bir |
|- ( ( y e. On /\ Tr ( R1 ` y ) ) -> ( suc y e. dom R1 -> Tr ( R1 ` suc y ) ) ) |
32 |
|
ndmfv |
|- ( -. suc y e. dom R1 -> ( R1 ` suc y ) = (/) ) |
33 |
|
treq |
|- ( ( R1 ` suc y ) = (/) -> ( Tr ( R1 ` suc y ) <-> Tr (/) ) ) |
34 |
32 33
|
syl |
|- ( -. suc y e. dom R1 -> ( Tr ( R1 ` suc y ) <-> Tr (/) ) ) |
35 |
21 34
|
mpbiri |
|- ( -. suc y e. dom R1 -> Tr ( R1 ` suc y ) ) |
36 |
31 35
|
pm2.61d1 |
|- ( ( y e. On /\ Tr ( R1 ` y ) ) -> Tr ( R1 ` suc y ) ) |
37 |
36
|
ex |
|- ( y e. On -> ( Tr ( R1 ` y ) -> Tr ( R1 ` suc y ) ) ) |
38 |
|
triun |
|- ( A. y e. x Tr ( R1 ` y ) -> Tr U_ y e. x ( R1 ` y ) ) |
39 |
|
r1limg |
|- ( ( x e. dom R1 /\ Lim x ) -> ( R1 ` x ) = U_ y e. x ( R1 ` y ) ) |
40 |
39
|
ancoms |
|- ( ( Lim x /\ x e. dom R1 ) -> ( R1 ` x ) = U_ y e. x ( R1 ` y ) ) |
41 |
|
treq |
|- ( ( R1 ` x ) = U_ y e. x ( R1 ` y ) -> ( Tr ( R1 ` x ) <-> Tr U_ y e. x ( R1 ` y ) ) ) |
42 |
40 41
|
syl |
|- ( ( Lim x /\ x e. dom R1 ) -> ( Tr ( R1 ` x ) <-> Tr U_ y e. x ( R1 ` y ) ) ) |
43 |
38 42
|
syl5ibr |
|- ( ( Lim x /\ x e. dom R1 ) -> ( A. y e. x Tr ( R1 ` y ) -> Tr ( R1 ` x ) ) ) |
44 |
43
|
impancom |
|- ( ( Lim x /\ A. y e. x Tr ( R1 ` y ) ) -> ( x e. dom R1 -> Tr ( R1 ` x ) ) ) |
45 |
|
ndmfv |
|- ( -. x e. dom R1 -> ( R1 ` x ) = (/) ) |
46 |
45 10
|
syl |
|- ( -. x e. dom R1 -> ( Tr ( R1 ` x ) <-> Tr (/) ) ) |
47 |
21 46
|
mpbiri |
|- ( -. x e. dom R1 -> Tr ( R1 ` x ) ) |
48 |
44 47
|
pm2.61d1 |
|- ( ( Lim x /\ A. y e. x Tr ( R1 ` y ) ) -> Tr ( R1 ` x ) ) |
49 |
48
|
ex |
|- ( Lim x -> ( A. y e. x Tr ( R1 ` y ) -> Tr ( R1 ` x ) ) ) |
50 |
11 14 17 20 21 37 49
|
tfinds |
|- ( A e. On -> Tr ( R1 ` A ) ) |
51 |
6 50
|
syl |
|- ( A e. dom R1 -> Tr ( R1 ` A ) ) |
52 |
|
ndmfv |
|- ( -. A e. dom R1 -> ( R1 ` A ) = (/) ) |
53 |
|
treq |
|- ( ( R1 ` A ) = (/) -> ( Tr ( R1 ` A ) <-> Tr (/) ) ) |
54 |
52 53
|
syl |
|- ( -. A e. dom R1 -> ( Tr ( R1 ` A ) <-> Tr (/) ) ) |
55 |
21 54
|
mpbiri |
|- ( -. A e. dom R1 -> Tr ( R1 ` A ) ) |
56 |
51 55
|
pm2.61i |
|- Tr ( R1 ` A ) |