| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
| 2 |
1
|
simpri |
|- Lim dom R1 |
| 3 |
|
limord |
|- ( Lim dom R1 -> Ord dom R1 ) |
| 4 |
|
ordsson |
|- ( Ord dom R1 -> dom R1 C_ On ) |
| 5 |
2 3 4
|
mp2b |
|- dom R1 C_ On |
| 6 |
5
|
sseli |
|- ( A e. dom R1 -> A e. On ) |
| 7 |
|
fveq2 |
|- ( x = (/) -> ( R1 ` x ) = ( R1 ` (/) ) ) |
| 8 |
|
r10 |
|- ( R1 ` (/) ) = (/) |
| 9 |
7 8
|
eqtrdi |
|- ( x = (/) -> ( R1 ` x ) = (/) ) |
| 10 |
|
treq |
|- ( ( R1 ` x ) = (/) -> ( Tr ( R1 ` x ) <-> Tr (/) ) ) |
| 11 |
9 10
|
syl |
|- ( x = (/) -> ( Tr ( R1 ` x ) <-> Tr (/) ) ) |
| 12 |
|
fveq2 |
|- ( x = y -> ( R1 ` x ) = ( R1 ` y ) ) |
| 13 |
|
treq |
|- ( ( R1 ` x ) = ( R1 ` y ) -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` y ) ) ) |
| 14 |
12 13
|
syl |
|- ( x = y -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` y ) ) ) |
| 15 |
|
fveq2 |
|- ( x = suc y -> ( R1 ` x ) = ( R1 ` suc y ) ) |
| 16 |
|
treq |
|- ( ( R1 ` x ) = ( R1 ` suc y ) -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` suc y ) ) ) |
| 17 |
15 16
|
syl |
|- ( x = suc y -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` suc y ) ) ) |
| 18 |
|
fveq2 |
|- ( x = A -> ( R1 ` x ) = ( R1 ` A ) ) |
| 19 |
|
treq |
|- ( ( R1 ` x ) = ( R1 ` A ) -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` A ) ) ) |
| 20 |
18 19
|
syl |
|- ( x = A -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` A ) ) ) |
| 21 |
|
tr0 |
|- Tr (/) |
| 22 |
|
limsuc |
|- ( Lim dom R1 -> ( y e. dom R1 <-> suc y e. dom R1 ) ) |
| 23 |
2 22
|
ax-mp |
|- ( y e. dom R1 <-> suc y e. dom R1 ) |
| 24 |
|
simpr |
|- ( ( y e. On /\ Tr ( R1 ` y ) ) -> Tr ( R1 ` y ) ) |
| 25 |
|
pwtr |
|- ( Tr ( R1 ` y ) <-> Tr ~P ( R1 ` y ) ) |
| 26 |
24 25
|
sylib |
|- ( ( y e. On /\ Tr ( R1 ` y ) ) -> Tr ~P ( R1 ` y ) ) |
| 27 |
|
r1sucg |
|- ( y e. dom R1 -> ( R1 ` suc y ) = ~P ( R1 ` y ) ) |
| 28 |
|
treq |
|- ( ( R1 ` suc y ) = ~P ( R1 ` y ) -> ( Tr ( R1 ` suc y ) <-> Tr ~P ( R1 ` y ) ) ) |
| 29 |
27 28
|
syl |
|- ( y e. dom R1 -> ( Tr ( R1 ` suc y ) <-> Tr ~P ( R1 ` y ) ) ) |
| 30 |
26 29
|
syl5ibrcom |
|- ( ( y e. On /\ Tr ( R1 ` y ) ) -> ( y e. dom R1 -> Tr ( R1 ` suc y ) ) ) |
| 31 |
23 30
|
biimtrrid |
|- ( ( y e. On /\ Tr ( R1 ` y ) ) -> ( suc y e. dom R1 -> Tr ( R1 ` suc y ) ) ) |
| 32 |
|
ndmfv |
|- ( -. suc y e. dom R1 -> ( R1 ` suc y ) = (/) ) |
| 33 |
|
treq |
|- ( ( R1 ` suc y ) = (/) -> ( Tr ( R1 ` suc y ) <-> Tr (/) ) ) |
| 34 |
32 33
|
syl |
|- ( -. suc y e. dom R1 -> ( Tr ( R1 ` suc y ) <-> Tr (/) ) ) |
| 35 |
21 34
|
mpbiri |
|- ( -. suc y e. dom R1 -> Tr ( R1 ` suc y ) ) |
| 36 |
31 35
|
pm2.61d1 |
|- ( ( y e. On /\ Tr ( R1 ` y ) ) -> Tr ( R1 ` suc y ) ) |
| 37 |
36
|
ex |
|- ( y e. On -> ( Tr ( R1 ` y ) -> Tr ( R1 ` suc y ) ) ) |
| 38 |
|
triun |
|- ( A. y e. x Tr ( R1 ` y ) -> Tr U_ y e. x ( R1 ` y ) ) |
| 39 |
|
r1limg |
|- ( ( x e. dom R1 /\ Lim x ) -> ( R1 ` x ) = U_ y e. x ( R1 ` y ) ) |
| 40 |
39
|
ancoms |
|- ( ( Lim x /\ x e. dom R1 ) -> ( R1 ` x ) = U_ y e. x ( R1 ` y ) ) |
| 41 |
|
treq |
|- ( ( R1 ` x ) = U_ y e. x ( R1 ` y ) -> ( Tr ( R1 ` x ) <-> Tr U_ y e. x ( R1 ` y ) ) ) |
| 42 |
40 41
|
syl |
|- ( ( Lim x /\ x e. dom R1 ) -> ( Tr ( R1 ` x ) <-> Tr U_ y e. x ( R1 ` y ) ) ) |
| 43 |
38 42
|
imbitrrid |
|- ( ( Lim x /\ x e. dom R1 ) -> ( A. y e. x Tr ( R1 ` y ) -> Tr ( R1 ` x ) ) ) |
| 44 |
43
|
impancom |
|- ( ( Lim x /\ A. y e. x Tr ( R1 ` y ) ) -> ( x e. dom R1 -> Tr ( R1 ` x ) ) ) |
| 45 |
|
ndmfv |
|- ( -. x e. dom R1 -> ( R1 ` x ) = (/) ) |
| 46 |
45 10
|
syl |
|- ( -. x e. dom R1 -> ( Tr ( R1 ` x ) <-> Tr (/) ) ) |
| 47 |
21 46
|
mpbiri |
|- ( -. x e. dom R1 -> Tr ( R1 ` x ) ) |
| 48 |
44 47
|
pm2.61d1 |
|- ( ( Lim x /\ A. y e. x Tr ( R1 ` y ) ) -> Tr ( R1 ` x ) ) |
| 49 |
48
|
ex |
|- ( Lim x -> ( A. y e. x Tr ( R1 ` y ) -> Tr ( R1 ` x ) ) ) |
| 50 |
11 14 17 20 21 37 49
|
tfinds |
|- ( A e. On -> Tr ( R1 ` A ) ) |
| 51 |
6 50
|
syl |
|- ( A e. dom R1 -> Tr ( R1 ` A ) ) |
| 52 |
|
ndmfv |
|- ( -. A e. dom R1 -> ( R1 ` A ) = (/) ) |
| 53 |
|
treq |
|- ( ( R1 ` A ) = (/) -> ( Tr ( R1 ` A ) <-> Tr (/) ) ) |
| 54 |
52 53
|
syl |
|- ( -. A e. dom R1 -> ( Tr ( R1 ` A ) <-> Tr (/) ) ) |
| 55 |
21 54
|
mpbiri |
|- ( -. A e. dom R1 -> Tr ( R1 ` A ) ) |
| 56 |
51 55
|
pm2.61i |
|- Tr ( R1 ` A ) |