Metamath Proof Explorer


Theorem r1tr2

Description: The union of a cumulative hierarchy of sets at ordinal A is a subset of the hierarchy at A . JFM CLASSES1 th. 40. (Contributed by FL, 20-Apr-2011)

Ref Expression
Assertion r1tr2
|- U. ( R1 ` A ) C_ ( R1 ` A )

Proof

Step Hyp Ref Expression
1 r1tr
 |-  Tr ( R1 ` A )
2 df-tr
 |-  ( Tr ( R1 ` A ) <-> U. ( R1 ` A ) C_ ( R1 ` A ) )
3 1 2 mpbi
 |-  U. ( R1 ` A ) C_ ( R1 ` A )