Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
|- ( A =/= (/) <-> -. A = (/) ) |
2 |
|
simplr |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( R1 ` A ) e. Tarski ) |
3 |
|
simpll |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> A e. On ) |
4 |
|
onwf |
|- On C_ U. ( R1 " On ) |
5 |
4
|
sseli |
|- ( A e. On -> A e. U. ( R1 " On ) ) |
6 |
|
eqid |
|- ( rank ` A ) = ( rank ` A ) |
7 |
|
rankr1c |
|- ( A e. U. ( R1 " On ) -> ( ( rank ` A ) = ( rank ` A ) <-> ( -. A e. ( R1 ` ( rank ` A ) ) /\ A e. ( R1 ` suc ( rank ` A ) ) ) ) ) |
8 |
6 7
|
mpbii |
|- ( A e. U. ( R1 " On ) -> ( -. A e. ( R1 ` ( rank ` A ) ) /\ A e. ( R1 ` suc ( rank ` A ) ) ) ) |
9 |
5 8
|
syl |
|- ( A e. On -> ( -. A e. ( R1 ` ( rank ` A ) ) /\ A e. ( R1 ` suc ( rank ` A ) ) ) ) |
10 |
9
|
simpld |
|- ( A e. On -> -. A e. ( R1 ` ( rank ` A ) ) ) |
11 |
|
r1fnon |
|- R1 Fn On |
12 |
11
|
fndmi |
|- dom R1 = On |
13 |
12
|
eleq2i |
|- ( A e. dom R1 <-> A e. On ) |
14 |
|
rankonid |
|- ( A e. dom R1 <-> ( rank ` A ) = A ) |
15 |
13 14
|
bitr3i |
|- ( A e. On <-> ( rank ` A ) = A ) |
16 |
|
fveq2 |
|- ( ( rank ` A ) = A -> ( R1 ` ( rank ` A ) ) = ( R1 ` A ) ) |
17 |
15 16
|
sylbi |
|- ( A e. On -> ( R1 ` ( rank ` A ) ) = ( R1 ` A ) ) |
18 |
10 17
|
neleqtrd |
|- ( A e. On -> -. A e. ( R1 ` A ) ) |
19 |
18
|
adantl |
|- ( ( ( R1 ` A ) e. Tarski /\ A e. On ) -> -. A e. ( R1 ` A ) ) |
20 |
|
onssr1 |
|- ( A e. dom R1 -> A C_ ( R1 ` A ) ) |
21 |
13 20
|
sylbir |
|- ( A e. On -> A C_ ( R1 ` A ) ) |
22 |
|
tsken |
|- ( ( ( R1 ` A ) e. Tarski /\ A C_ ( R1 ` A ) ) -> ( A ~~ ( R1 ` A ) \/ A e. ( R1 ` A ) ) ) |
23 |
21 22
|
sylan2 |
|- ( ( ( R1 ` A ) e. Tarski /\ A e. On ) -> ( A ~~ ( R1 ` A ) \/ A e. ( R1 ` A ) ) ) |
24 |
23
|
ord |
|- ( ( ( R1 ` A ) e. Tarski /\ A e. On ) -> ( -. A ~~ ( R1 ` A ) -> A e. ( R1 ` A ) ) ) |
25 |
19 24
|
mt3d |
|- ( ( ( R1 ` A ) e. Tarski /\ A e. On ) -> A ~~ ( R1 ` A ) ) |
26 |
2 3 25
|
syl2anc |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> A ~~ ( R1 ` A ) ) |
27 |
|
carden2b |
|- ( A ~~ ( R1 ` A ) -> ( card ` A ) = ( card ` ( R1 ` A ) ) ) |
28 |
26 27
|
syl |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( card ` A ) = ( card ` ( R1 ` A ) ) ) |
29 |
|
simpl |
|- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> A e. On ) |
30 |
|
simplr |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> ( R1 ` A ) e. Tarski ) |
31 |
21
|
adantr |
|- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> A C_ ( R1 ` A ) ) |
32 |
31
|
sselda |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> x e. ( R1 ` A ) ) |
33 |
|
tsksdom |
|- ( ( ( R1 ` A ) e. Tarski /\ x e. ( R1 ` A ) ) -> x ~< ( R1 ` A ) ) |
34 |
30 32 33
|
syl2anc |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> x ~< ( R1 ` A ) ) |
35 |
|
simpll |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> A e. On ) |
36 |
25
|
ensymd |
|- ( ( ( R1 ` A ) e. Tarski /\ A e. On ) -> ( R1 ` A ) ~~ A ) |
37 |
30 35 36
|
syl2anc |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> ( R1 ` A ) ~~ A ) |
38 |
|
sdomentr |
|- ( ( x ~< ( R1 ` A ) /\ ( R1 ` A ) ~~ A ) -> x ~< A ) |
39 |
34 37 38
|
syl2anc |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> x ~< A ) |
40 |
39
|
ralrimiva |
|- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> A. x e. A x ~< A ) |
41 |
|
iscard |
|- ( ( card ` A ) = A <-> ( A e. On /\ A. x e. A x ~< A ) ) |
42 |
29 40 41
|
sylanbrc |
|- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> ( card ` A ) = A ) |
43 |
42
|
adantr |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( card ` A ) = A ) |
44 |
28 43
|
eqtr3d |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( card ` ( R1 ` A ) ) = A ) |
45 |
|
r10 |
|- ( R1 ` (/) ) = (/) |
46 |
|
on0eln0 |
|- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
47 |
46
|
biimpar |
|- ( ( A e. On /\ A =/= (/) ) -> (/) e. A ) |
48 |
|
r1sdom |
|- ( ( A e. On /\ (/) e. A ) -> ( R1 ` (/) ) ~< ( R1 ` A ) ) |
49 |
47 48
|
syldan |
|- ( ( A e. On /\ A =/= (/) ) -> ( R1 ` (/) ) ~< ( R1 ` A ) ) |
50 |
45 49
|
eqbrtrrid |
|- ( ( A e. On /\ A =/= (/) ) -> (/) ~< ( R1 ` A ) ) |
51 |
|
fvex |
|- ( R1 ` A ) e. _V |
52 |
51
|
0sdom |
|- ( (/) ~< ( R1 ` A ) <-> ( R1 ` A ) =/= (/) ) |
53 |
50 52
|
sylib |
|- ( ( A e. On /\ A =/= (/) ) -> ( R1 ` A ) =/= (/) ) |
54 |
53
|
adantlr |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( R1 ` A ) =/= (/) ) |
55 |
|
tskcard |
|- ( ( ( R1 ` A ) e. Tarski /\ ( R1 ` A ) =/= (/) ) -> ( card ` ( R1 ` A ) ) e. Inacc ) |
56 |
2 54 55
|
syl2anc |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( card ` ( R1 ` A ) ) e. Inacc ) |
57 |
44 56
|
eqeltrrd |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> A e. Inacc ) |
58 |
57
|
ex |
|- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> ( A =/= (/) -> A e. Inacc ) ) |
59 |
1 58
|
syl5bir |
|- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> ( -. A = (/) -> A e. Inacc ) ) |
60 |
59
|
orrd |
|- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> ( A = (/) \/ A e. Inacc ) ) |
61 |
60
|
ex |
|- ( A e. On -> ( ( R1 ` A ) e. Tarski -> ( A = (/) \/ A e. Inacc ) ) ) |
62 |
|
fveq2 |
|- ( A = (/) -> ( R1 ` A ) = ( R1 ` (/) ) ) |
63 |
62 45
|
eqtrdi |
|- ( A = (/) -> ( R1 ` A ) = (/) ) |
64 |
|
0tsk |
|- (/) e. Tarski |
65 |
63 64
|
eqeltrdi |
|- ( A = (/) -> ( R1 ` A ) e. Tarski ) |
66 |
|
inatsk |
|- ( A e. Inacc -> ( R1 ` A ) e. Tarski ) |
67 |
65 66
|
jaoi |
|- ( ( A = (/) \/ A e. Inacc ) -> ( R1 ` A ) e. Tarski ) |
68 |
61 67
|
impbid1 |
|- ( A e. On -> ( ( R1 ` A ) e. Tarski <-> ( A = (/) \/ A e. Inacc ) ) ) |