| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ne |
|- ( A =/= (/) <-> -. A = (/) ) |
| 2 |
|
simplr |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( R1 ` A ) e. Tarski ) |
| 3 |
|
simpll |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> A e. On ) |
| 4 |
|
onwf |
|- On C_ U. ( R1 " On ) |
| 5 |
4
|
sseli |
|- ( A e. On -> A e. U. ( R1 " On ) ) |
| 6 |
|
eqid |
|- ( rank ` A ) = ( rank ` A ) |
| 7 |
|
rankr1c |
|- ( A e. U. ( R1 " On ) -> ( ( rank ` A ) = ( rank ` A ) <-> ( -. A e. ( R1 ` ( rank ` A ) ) /\ A e. ( R1 ` suc ( rank ` A ) ) ) ) ) |
| 8 |
6 7
|
mpbii |
|- ( A e. U. ( R1 " On ) -> ( -. A e. ( R1 ` ( rank ` A ) ) /\ A e. ( R1 ` suc ( rank ` A ) ) ) ) |
| 9 |
5 8
|
syl |
|- ( A e. On -> ( -. A e. ( R1 ` ( rank ` A ) ) /\ A e. ( R1 ` suc ( rank ` A ) ) ) ) |
| 10 |
9
|
simpld |
|- ( A e. On -> -. A e. ( R1 ` ( rank ` A ) ) ) |
| 11 |
|
r1fnon |
|- R1 Fn On |
| 12 |
11
|
fndmi |
|- dom R1 = On |
| 13 |
12
|
eleq2i |
|- ( A e. dom R1 <-> A e. On ) |
| 14 |
|
rankonid |
|- ( A e. dom R1 <-> ( rank ` A ) = A ) |
| 15 |
13 14
|
bitr3i |
|- ( A e. On <-> ( rank ` A ) = A ) |
| 16 |
|
fveq2 |
|- ( ( rank ` A ) = A -> ( R1 ` ( rank ` A ) ) = ( R1 ` A ) ) |
| 17 |
15 16
|
sylbi |
|- ( A e. On -> ( R1 ` ( rank ` A ) ) = ( R1 ` A ) ) |
| 18 |
10 17
|
neleqtrd |
|- ( A e. On -> -. A e. ( R1 ` A ) ) |
| 19 |
18
|
adantl |
|- ( ( ( R1 ` A ) e. Tarski /\ A e. On ) -> -. A e. ( R1 ` A ) ) |
| 20 |
|
onssr1 |
|- ( A e. dom R1 -> A C_ ( R1 ` A ) ) |
| 21 |
13 20
|
sylbir |
|- ( A e. On -> A C_ ( R1 ` A ) ) |
| 22 |
|
tsken |
|- ( ( ( R1 ` A ) e. Tarski /\ A C_ ( R1 ` A ) ) -> ( A ~~ ( R1 ` A ) \/ A e. ( R1 ` A ) ) ) |
| 23 |
21 22
|
sylan2 |
|- ( ( ( R1 ` A ) e. Tarski /\ A e. On ) -> ( A ~~ ( R1 ` A ) \/ A e. ( R1 ` A ) ) ) |
| 24 |
23
|
ord |
|- ( ( ( R1 ` A ) e. Tarski /\ A e. On ) -> ( -. A ~~ ( R1 ` A ) -> A e. ( R1 ` A ) ) ) |
| 25 |
19 24
|
mt3d |
|- ( ( ( R1 ` A ) e. Tarski /\ A e. On ) -> A ~~ ( R1 ` A ) ) |
| 26 |
2 3 25
|
syl2anc |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> A ~~ ( R1 ` A ) ) |
| 27 |
|
carden2b |
|- ( A ~~ ( R1 ` A ) -> ( card ` A ) = ( card ` ( R1 ` A ) ) ) |
| 28 |
26 27
|
syl |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( card ` A ) = ( card ` ( R1 ` A ) ) ) |
| 29 |
|
simpl |
|- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> A e. On ) |
| 30 |
|
simplr |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> ( R1 ` A ) e. Tarski ) |
| 31 |
21
|
adantr |
|- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> A C_ ( R1 ` A ) ) |
| 32 |
31
|
sselda |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> x e. ( R1 ` A ) ) |
| 33 |
|
tsksdom |
|- ( ( ( R1 ` A ) e. Tarski /\ x e. ( R1 ` A ) ) -> x ~< ( R1 ` A ) ) |
| 34 |
30 32 33
|
syl2anc |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> x ~< ( R1 ` A ) ) |
| 35 |
|
simpll |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> A e. On ) |
| 36 |
25
|
ensymd |
|- ( ( ( R1 ` A ) e. Tarski /\ A e. On ) -> ( R1 ` A ) ~~ A ) |
| 37 |
30 35 36
|
syl2anc |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> ( R1 ` A ) ~~ A ) |
| 38 |
|
sdomentr |
|- ( ( x ~< ( R1 ` A ) /\ ( R1 ` A ) ~~ A ) -> x ~< A ) |
| 39 |
34 37 38
|
syl2anc |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ x e. A ) -> x ~< A ) |
| 40 |
39
|
ralrimiva |
|- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> A. x e. A x ~< A ) |
| 41 |
|
iscard |
|- ( ( card ` A ) = A <-> ( A e. On /\ A. x e. A x ~< A ) ) |
| 42 |
29 40 41
|
sylanbrc |
|- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> ( card ` A ) = A ) |
| 43 |
42
|
adantr |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( card ` A ) = A ) |
| 44 |
28 43
|
eqtr3d |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( card ` ( R1 ` A ) ) = A ) |
| 45 |
|
r10 |
|- ( R1 ` (/) ) = (/) |
| 46 |
|
on0eln0 |
|- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
| 47 |
46
|
biimpar |
|- ( ( A e. On /\ A =/= (/) ) -> (/) e. A ) |
| 48 |
|
r1sdom |
|- ( ( A e. On /\ (/) e. A ) -> ( R1 ` (/) ) ~< ( R1 ` A ) ) |
| 49 |
47 48
|
syldan |
|- ( ( A e. On /\ A =/= (/) ) -> ( R1 ` (/) ) ~< ( R1 ` A ) ) |
| 50 |
45 49
|
eqbrtrrid |
|- ( ( A e. On /\ A =/= (/) ) -> (/) ~< ( R1 ` A ) ) |
| 51 |
|
fvex |
|- ( R1 ` A ) e. _V |
| 52 |
51
|
0sdom |
|- ( (/) ~< ( R1 ` A ) <-> ( R1 ` A ) =/= (/) ) |
| 53 |
50 52
|
sylib |
|- ( ( A e. On /\ A =/= (/) ) -> ( R1 ` A ) =/= (/) ) |
| 54 |
53
|
adantlr |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( R1 ` A ) =/= (/) ) |
| 55 |
|
tskcard |
|- ( ( ( R1 ` A ) e. Tarski /\ ( R1 ` A ) =/= (/) ) -> ( card ` ( R1 ` A ) ) e. Inacc ) |
| 56 |
2 54 55
|
syl2anc |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> ( card ` ( R1 ` A ) ) e. Inacc ) |
| 57 |
44 56
|
eqeltrrd |
|- ( ( ( A e. On /\ ( R1 ` A ) e. Tarski ) /\ A =/= (/) ) -> A e. Inacc ) |
| 58 |
57
|
ex |
|- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> ( A =/= (/) -> A e. Inacc ) ) |
| 59 |
1 58
|
biimtrrid |
|- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> ( -. A = (/) -> A e. Inacc ) ) |
| 60 |
59
|
orrd |
|- ( ( A e. On /\ ( R1 ` A ) e. Tarski ) -> ( A = (/) \/ A e. Inacc ) ) |
| 61 |
60
|
ex |
|- ( A e. On -> ( ( R1 ` A ) e. Tarski -> ( A = (/) \/ A e. Inacc ) ) ) |
| 62 |
|
fveq2 |
|- ( A = (/) -> ( R1 ` A ) = ( R1 ` (/) ) ) |
| 63 |
62 45
|
eqtrdi |
|- ( A = (/) -> ( R1 ` A ) = (/) ) |
| 64 |
|
0tsk |
|- (/) e. Tarski |
| 65 |
63 64
|
eqeltrdi |
|- ( A = (/) -> ( R1 ` A ) e. Tarski ) |
| 66 |
|
inatsk |
|- ( A e. Inacc -> ( R1 ` A ) e. Tarski ) |
| 67 |
65 66
|
jaoi |
|- ( ( A = (/) \/ A e. Inacc ) -> ( R1 ` A ) e. Tarski ) |
| 68 |
61 67
|
impbid1 |
|- ( A e. On -> ( ( R1 ` A ) e. Tarski <-> ( A = (/) \/ A e. Inacc ) ) ) |