| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( A e. dom R1 /\ A = (/) ) -> A = (/) ) |
| 2 |
1
|
fveq2d |
|- ( ( A e. dom R1 /\ A = (/) ) -> ( R1 ` A ) = ( R1 ` (/) ) ) |
| 3 |
|
r10 |
|- ( R1 ` (/) ) = (/) |
| 4 |
2 3
|
eqtrdi |
|- ( ( A e. dom R1 /\ A = (/) ) -> ( R1 ` A ) = (/) ) |
| 5 |
|
0ss |
|- (/) C_ U_ x e. A ~P ( R1 ` x ) |
| 6 |
5
|
a1i |
|- ( ( A e. dom R1 /\ A = (/) ) -> (/) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 7 |
4 6
|
eqsstrd |
|- ( ( A e. dom R1 /\ A = (/) ) -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 8 |
|
nfv |
|- F/ x A e. dom R1 |
| 9 |
|
nfcv |
|- F/_ x ( R1 ` A ) |
| 10 |
|
nfiu1 |
|- F/_ x U_ x e. A ~P ( R1 ` x ) |
| 11 |
9 10
|
nfss |
|- F/ x ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) |
| 12 |
|
simpr |
|- ( ( A e. dom R1 /\ A = suc x ) -> A = suc x ) |
| 13 |
12
|
fveq2d |
|- ( ( A e. dom R1 /\ A = suc x ) -> ( R1 ` A ) = ( R1 ` suc x ) ) |
| 14 |
|
eleq1 |
|- ( A = suc x -> ( A e. dom R1 <-> suc x e. dom R1 ) ) |
| 15 |
14
|
biimpac |
|- ( ( A e. dom R1 /\ A = suc x ) -> suc x e. dom R1 ) |
| 16 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
| 17 |
16
|
simpri |
|- Lim dom R1 |
| 18 |
|
limsuc |
|- ( Lim dom R1 -> ( x e. dom R1 <-> suc x e. dom R1 ) ) |
| 19 |
17 18
|
ax-mp |
|- ( x e. dom R1 <-> suc x e. dom R1 ) |
| 20 |
15 19
|
sylibr |
|- ( ( A e. dom R1 /\ A = suc x ) -> x e. dom R1 ) |
| 21 |
|
r1sucg |
|- ( x e. dom R1 -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
| 22 |
20 21
|
syl |
|- ( ( A e. dom R1 /\ A = suc x ) -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
| 23 |
13 22
|
eqtrd |
|- ( ( A e. dom R1 /\ A = suc x ) -> ( R1 ` A ) = ~P ( R1 ` x ) ) |
| 24 |
|
vex |
|- x e. _V |
| 25 |
24
|
sucid |
|- x e. suc x |
| 26 |
25 12
|
eleqtrrid |
|- ( ( A e. dom R1 /\ A = suc x ) -> x e. A ) |
| 27 |
|
ssiun2 |
|- ( x e. A -> ~P ( R1 ` x ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 28 |
26 27
|
syl |
|- ( ( A e. dom R1 /\ A = suc x ) -> ~P ( R1 ` x ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 29 |
23 28
|
eqsstrd |
|- ( ( A e. dom R1 /\ A = suc x ) -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 30 |
29
|
ex |
|- ( A e. dom R1 -> ( A = suc x -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) ) |
| 31 |
30
|
a1d |
|- ( A e. dom R1 -> ( x e. On -> ( A = suc x -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) ) ) |
| 32 |
8 11 31
|
rexlimd |
|- ( A e. dom R1 -> ( E. x e. On A = suc x -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) ) |
| 33 |
32
|
imp |
|- ( ( A e. dom R1 /\ E. x e. On A = suc x ) -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 34 |
|
r1limg |
|- ( ( A e. dom R1 /\ Lim A ) -> ( R1 ` A ) = U_ x e. A ( R1 ` x ) ) |
| 35 |
|
r1tr |
|- Tr ( R1 ` x ) |
| 36 |
|
dftr4 |
|- ( Tr ( R1 ` x ) <-> ( R1 ` x ) C_ ~P ( R1 ` x ) ) |
| 37 |
35 36
|
mpbi |
|- ( R1 ` x ) C_ ~P ( R1 ` x ) |
| 38 |
37
|
a1i |
|- ( ( A e. dom R1 /\ Lim A ) -> ( R1 ` x ) C_ ~P ( R1 ` x ) ) |
| 39 |
38
|
ralrimivw |
|- ( ( A e. dom R1 /\ Lim A ) -> A. x e. A ( R1 ` x ) C_ ~P ( R1 ` x ) ) |
| 40 |
|
ss2iun |
|- ( A. x e. A ( R1 ` x ) C_ ~P ( R1 ` x ) -> U_ x e. A ( R1 ` x ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 41 |
39 40
|
syl |
|- ( ( A e. dom R1 /\ Lim A ) -> U_ x e. A ( R1 ` x ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 42 |
34 41
|
eqsstrd |
|- ( ( A e. dom R1 /\ Lim A ) -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 43 |
42
|
adantrl |
|- ( ( A e. dom R1 /\ ( A e. _V /\ Lim A ) ) -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 44 |
|
limord |
|- ( Lim dom R1 -> Ord dom R1 ) |
| 45 |
17 44
|
ax-mp |
|- Ord dom R1 |
| 46 |
|
ordsson |
|- ( Ord dom R1 -> dom R1 C_ On ) |
| 47 |
45 46
|
ax-mp |
|- dom R1 C_ On |
| 48 |
47
|
sseli |
|- ( A e. dom R1 -> A e. On ) |
| 49 |
|
onzsl |
|- ( A e. On <-> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 50 |
48 49
|
sylib |
|- ( A e. dom R1 -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 51 |
7 33 43 50
|
mpjao3dan |
|- ( A e. dom R1 -> ( R1 ` A ) C_ U_ x e. A ~P ( R1 ` x ) ) |
| 52 |
|
ordtr1 |
|- ( Ord dom R1 -> ( ( x e. A /\ A e. dom R1 ) -> x e. dom R1 ) ) |
| 53 |
45 52
|
ax-mp |
|- ( ( x e. A /\ A e. dom R1 ) -> x e. dom R1 ) |
| 54 |
53
|
ancoms |
|- ( ( A e. dom R1 /\ x e. A ) -> x e. dom R1 ) |
| 55 |
54 21
|
syl |
|- ( ( A e. dom R1 /\ x e. A ) -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
| 56 |
|
simpr |
|- ( ( A e. dom R1 /\ x e. A ) -> x e. A ) |
| 57 |
|
ordelord |
|- ( ( Ord dom R1 /\ A e. dom R1 ) -> Ord A ) |
| 58 |
45 57
|
mpan |
|- ( A e. dom R1 -> Ord A ) |
| 59 |
58
|
adantr |
|- ( ( A e. dom R1 /\ x e. A ) -> Ord A ) |
| 60 |
|
ordelsuc |
|- ( ( x e. A /\ Ord A ) -> ( x e. A <-> suc x C_ A ) ) |
| 61 |
56 59 60
|
syl2anc |
|- ( ( A e. dom R1 /\ x e. A ) -> ( x e. A <-> suc x C_ A ) ) |
| 62 |
56 61
|
mpbid |
|- ( ( A e. dom R1 /\ x e. A ) -> suc x C_ A ) |
| 63 |
54 19
|
sylib |
|- ( ( A e. dom R1 /\ x e. A ) -> suc x e. dom R1 ) |
| 64 |
|
simpl |
|- ( ( A e. dom R1 /\ x e. A ) -> A e. dom R1 ) |
| 65 |
|
r1ord3g |
|- ( ( suc x e. dom R1 /\ A e. dom R1 ) -> ( suc x C_ A -> ( R1 ` suc x ) C_ ( R1 ` A ) ) ) |
| 66 |
63 64 65
|
syl2anc |
|- ( ( A e. dom R1 /\ x e. A ) -> ( suc x C_ A -> ( R1 ` suc x ) C_ ( R1 ` A ) ) ) |
| 67 |
62 66
|
mpd |
|- ( ( A e. dom R1 /\ x e. A ) -> ( R1 ` suc x ) C_ ( R1 ` A ) ) |
| 68 |
55 67
|
eqsstrrd |
|- ( ( A e. dom R1 /\ x e. A ) -> ~P ( R1 ` x ) C_ ( R1 ` A ) ) |
| 69 |
68
|
ralrimiva |
|- ( A e. dom R1 -> A. x e. A ~P ( R1 ` x ) C_ ( R1 ` A ) ) |
| 70 |
|
iunss |
|- ( U_ x e. A ~P ( R1 ` x ) C_ ( R1 ` A ) <-> A. x e. A ~P ( R1 ` x ) C_ ( R1 ` A ) ) |
| 71 |
69 70
|
sylibr |
|- ( A e. dom R1 -> U_ x e. A ~P ( R1 ` x ) C_ ( R1 ` A ) ) |
| 72 |
51 71
|
eqssd |
|- ( A e. dom R1 -> ( R1 ` A ) = U_ x e. A ~P ( R1 ` x ) ) |