Metamath Proof Explorer


Theorem r1val2

Description: The value of the cumulative hierarchy of sets function expressed in terms of rank. Definition 15.19 of Monk1 p. 113. (Contributed by NM, 30-Nov-2003)

Ref Expression
Assertion r1val2
|- ( A e. On -> ( R1 ` A ) = { x | ( rank ` x ) e. A } )

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 1 rankr1a
 |-  ( A e. On -> ( x e. ( R1 ` A ) <-> ( rank ` x ) e. A ) )
3 2 abbi2dv
 |-  ( A e. On -> ( R1 ` A ) = { x | ( rank ` x ) e. A } )