Step |
Hyp |
Ref |
Expression |
1 |
|
r1fnon |
|- R1 Fn On |
2 |
1
|
fndmi |
|- dom R1 = On |
3 |
2
|
eleq2i |
|- ( A e. dom R1 <-> A e. On ) |
4 |
|
r1val1 |
|- ( A e. dom R1 -> ( R1 ` A ) = U_ x e. A ~P ( R1 ` x ) ) |
5 |
3 4
|
sylbir |
|- ( A e. On -> ( R1 ` A ) = U_ x e. A ~P ( R1 ` x ) ) |
6 |
|
onelon |
|- ( ( A e. On /\ x e. A ) -> x e. On ) |
7 |
|
r1val2 |
|- ( x e. On -> ( R1 ` x ) = { y | ( rank ` y ) e. x } ) |
8 |
6 7
|
syl |
|- ( ( A e. On /\ x e. A ) -> ( R1 ` x ) = { y | ( rank ` y ) e. x } ) |
9 |
8
|
pweqd |
|- ( ( A e. On /\ x e. A ) -> ~P ( R1 ` x ) = ~P { y | ( rank ` y ) e. x } ) |
10 |
9
|
iuneq2dv |
|- ( A e. On -> U_ x e. A ~P ( R1 ` x ) = U_ x e. A ~P { y | ( rank ` y ) e. x } ) |
11 |
5 10
|
eqtrd |
|- ( A e. On -> ( R1 ` A ) = U_ x e. A ~P { y | ( rank ` y ) e. x } ) |