Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> ( R1 ` A ) e. WUni ) |
2 |
1
|
wun0 |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> (/) e. ( R1 ` A ) ) |
3 |
|
elfvdm |
|- ( (/) e. ( R1 ` A ) -> A e. dom R1 ) |
4 |
2 3
|
syl |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> A e. dom R1 ) |
5 |
|
r1fnon |
|- R1 Fn On |
6 |
5
|
fndmi |
|- dom R1 = On |
7 |
4 6
|
eleqtrdi |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> A e. On ) |
8 |
|
eloni |
|- ( A e. On -> Ord A ) |
9 |
7 8
|
syl |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> Ord A ) |
10 |
|
n0i |
|- ( (/) e. ( R1 ` A ) -> -. ( R1 ` A ) = (/) ) |
11 |
2 10
|
syl |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> -. ( R1 ` A ) = (/) ) |
12 |
|
fveq2 |
|- ( A = (/) -> ( R1 ` A ) = ( R1 ` (/) ) ) |
13 |
|
r10 |
|- ( R1 ` (/) ) = (/) |
14 |
12 13
|
eqtrdi |
|- ( A = (/) -> ( R1 ` A ) = (/) ) |
15 |
11 14
|
nsyl |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> -. A = (/) ) |
16 |
|
suceloni |
|- ( A e. On -> suc A e. On ) |
17 |
7 16
|
syl |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> suc A e. On ) |
18 |
|
sucidg |
|- ( A e. On -> A e. suc A ) |
19 |
7 18
|
syl |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> A e. suc A ) |
20 |
|
r1ord |
|- ( suc A e. On -> ( A e. suc A -> ( R1 ` A ) e. ( R1 ` suc A ) ) ) |
21 |
17 19 20
|
sylc |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> ( R1 ` A ) e. ( R1 ` suc A ) ) |
22 |
|
r1elwf |
|- ( ( R1 ` A ) e. ( R1 ` suc A ) -> ( R1 ` A ) e. U. ( R1 " On ) ) |
23 |
|
wfelirr |
|- ( ( R1 ` A ) e. U. ( R1 " On ) -> -. ( R1 ` A ) e. ( R1 ` A ) ) |
24 |
21 22 23
|
3syl |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> -. ( R1 ` A ) e. ( R1 ` A ) ) |
25 |
|
simprr |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> A = suc x ) |
26 |
25
|
fveq2d |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` A ) = ( R1 ` suc x ) ) |
27 |
|
r1suc |
|- ( x e. On -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
28 |
27
|
ad2antrl |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
29 |
26 28
|
eqtrd |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` A ) = ~P ( R1 ` x ) ) |
30 |
|
simplr |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` A ) e. WUni ) |
31 |
7
|
adantr |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> A e. On ) |
32 |
|
sucidg |
|- ( x e. On -> x e. suc x ) |
33 |
32
|
ad2antrl |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> x e. suc x ) |
34 |
33 25
|
eleqtrrd |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> x e. A ) |
35 |
|
r1ord |
|- ( A e. On -> ( x e. A -> ( R1 ` x ) e. ( R1 ` A ) ) ) |
36 |
31 34 35
|
sylc |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` x ) e. ( R1 ` A ) ) |
37 |
30 36
|
wunpw |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ~P ( R1 ` x ) e. ( R1 ` A ) ) |
38 |
29 37
|
eqeltrd |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` A ) e. ( R1 ` A ) ) |
39 |
38
|
rexlimdvaa |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> ( E. x e. On A = suc x -> ( R1 ` A ) e. ( R1 ` A ) ) ) |
40 |
24 39
|
mtod |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> -. E. x e. On A = suc x ) |
41 |
|
ioran |
|- ( -. ( A = (/) \/ E. x e. On A = suc x ) <-> ( -. A = (/) /\ -. E. x e. On A = suc x ) ) |
42 |
15 40 41
|
sylanbrc |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> -. ( A = (/) \/ E. x e. On A = suc x ) ) |
43 |
|
dflim3 |
|- ( Lim A <-> ( Ord A /\ -. ( A = (/) \/ E. x e. On A = suc x ) ) ) |
44 |
9 42 43
|
sylanbrc |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> Lim A ) |
45 |
|
r1limwun |
|- ( ( A e. V /\ Lim A ) -> ( R1 ` A ) e. WUni ) |
46 |
44 45
|
impbida |
|- ( A e. V -> ( ( R1 ` A ) e. WUni <-> Lim A ) ) |