Metamath Proof Explorer


Theorem r2al

Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020)

Ref Expression
Assertion r2al
|- ( A. x e. A A. y e. B ph <-> A. x A. y ( ( x e. A /\ y e. B ) -> ph ) )

Proof

Step Hyp Ref Expression
1 19.21v
 |-  ( A. y ( x e. A -> ( y e. B -> ph ) ) <-> ( x e. A -> A. y ( y e. B -> ph ) ) )
2 1 r2allem
 |-  ( A. x e. A A. y e. B ph <-> A. x A. y ( ( x e. A /\ y e. B ) -> ph ) )