Description: Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016) Use r2allem . (Revised by Wolf Lammen, 9-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | r2alf.1 | |- F/_ y A |
|
Assertion | r2alf | |- ( A. x e. A A. y e. B ph <-> A. x A. y ( ( x e. A /\ y e. B ) -> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r2alf.1 | |- F/_ y A |
|
2 | 1 | nfcri | |- F/ y x e. A |
3 | 2 | 19.21 | |- ( A. y ( x e. A -> ( y e. B -> ph ) ) <-> ( x e. A -> A. y ( y e. B -> ph ) ) ) |
4 | 3 | r2allem | |- ( A. x e. A A. y e. B ph <-> A. x A. y ( ( x e. A /\ y e. B ) -> ph ) ) |