Metamath Proof Explorer


Theorem r2alf

Description: Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016) Use r2allem . (Revised by Wolf Lammen, 9-Jan-2020)

Ref Expression
Hypothesis r2alf.1
|- F/_ y A
Assertion r2alf
|- ( A. x e. A A. y e. B ph <-> A. x A. y ( ( x e. A /\ y e. B ) -> ph ) )

Proof

Step Hyp Ref Expression
1 r2alf.1
 |-  F/_ y A
2 1 nfcri
 |-  F/ y x e. A
3 2 19.21
 |-  ( A. y ( x e. A -> ( y e. B -> ph ) ) <-> ( x e. A -> A. y ( y e. B -> ph ) ) )
4 3 r2allem
 |-  ( A. x e. A A. y e. B ph <-> A. x A. y ( ( x e. A /\ y e. B ) -> ph ) )