Description: Double restricted universal quantification. For a version based on fewer axioms see r2al . (Contributed by Mario Carneiro, 14-Oct-2016) Use r2allem . (Revised by Wolf Lammen, 9-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | r2alf.1 | |- F/_ y A |
|
| Assertion | r2alf | |- ( A. x e. A A. y e. B ph <-> A. x A. y ( ( x e. A /\ y e. B ) -> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r2alf.1 | |- F/_ y A |
|
| 2 | 1 | nfcri | |- F/ y x e. A |
| 3 | 2 | 19.21 | |- ( A. y ( x e. A -> ( y e. B -> ph ) ) <-> ( x e. A -> A. y ( y e. B -> ph ) ) ) |
| 4 | 3 | r2allem | |- ( A. x e. A A. y e. B ph <-> A. x A. y ( ( x e. A /\ y e. B ) -> ph ) ) |