Description: Double restricted existential quantification. For a version based on fewer axioms see r2ex . (Contributed by Mario Carneiro, 14-Oct-2016) Use r2exlem . (Revised by Wolf Lammen, 10-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | r2exf.1 | |- F/_ y A |
|
| Assertion | r2exf | |- ( E. x e. A E. y e. B ph <-> E. x E. y ( ( x e. A /\ y e. B ) /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r2exf.1 | |- F/_ y A |
|
| 2 | 1 | r2alf | |- ( A. x e. A A. y e. B -. ph <-> A. x A. y ( ( x e. A /\ y e. B ) -> -. ph ) ) |
| 3 | 2 | r2exlem | |- ( E. x e. A E. y e. B ph <-> E. x E. y ( ( x e. A /\ y e. B ) /\ ph ) ) |