Metamath Proof Explorer


Theorem r2exf

Description: Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016) Use r2exlem . (Revised by Wolf Lammen, 10-Jan-2020)

Ref Expression
Hypothesis r2exf.1
|- F/_ y A
Assertion r2exf
|- ( E. x e. A E. y e. B ph <-> E. x E. y ( ( x e. A /\ y e. B ) /\ ph ) )

Proof

Step Hyp Ref Expression
1 r2exf.1
 |-  F/_ y A
2 1 r2alf
 |-  ( A. x e. A A. y e. B -. ph <-> A. x A. y ( ( x e. A /\ y e. B ) -> -. ph ) )
3 2 r2exlem
 |-  ( E. x e. A E. y e. B ph <-> E. x E. y ( ( x e. A /\ y e. B ) /\ ph ) )