Description: Restricted quantifier version of Axiom 5 of Mendelson p. 69. This is the axiom stdpc5 of standard predicate calculus for a restricted domain. See ra4v for a version requiring fewer axioms. (Contributed by NM, 16-Jan-2004) (Proof shortened by BJ, 27-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ra4.1 | |- F/ x ph |
|
Assertion | ra4 | |- ( A. x e. A ( ph -> ps ) -> ( ph -> A. x e. A ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ra4.1 | |- F/ x ph |
|
2 | 1 | r19.21 | |- ( A. x e. A ( ph -> ps ) <-> ( ph -> A. x e. A ps ) ) |
3 | 2 | biimpi | |- ( A. x e. A ( ph -> ps ) -> ( ph -> A. x e. A ps ) ) |