Metamath Proof Explorer


Theorem ra4

Description: Restricted quantifier version of Axiom 5 of Mendelson p. 69. This is the axiom stdpc5 of standard predicate calculus for a restricted domain. See ra4v for a version requiring fewer axioms. (Contributed by NM, 16-Jan-2004) (Proof shortened by BJ, 27-Mar-2020)

Ref Expression
Hypothesis ra4.1
|- F/ x ph
Assertion ra4
|- ( A. x e. A ( ph -> ps ) -> ( ph -> A. x e. A ps ) )

Proof

Step Hyp Ref Expression
1 ra4.1
 |-  F/ x ph
2 1 r19.21
 |-  ( A. x e. A ( ph -> ps ) <-> ( ph -> A. x e. A ps ) )
3 2 biimpi
 |-  ( A. x e. A ( ph -> ps ) -> ( ph -> A. x e. A ps ) )