Metamath Proof Explorer


Theorem ra4v

Description: Version of ra4 with a disjoint variable condition, requiring fewer axioms. This is stdpc5v for a restricted domain. (Contributed by BJ, 27-Mar-2020)

Ref Expression
Assertion ra4v
|- ( A. x e. A ( ph -> ps ) -> ( ph -> A. x e. A ps ) )

Proof

Step Hyp Ref Expression
1 r19.21v
 |-  ( A. x e. A ( ph -> ps ) <-> ( ph -> A. x e. A ps ) )
2 1 biimpi
 |-  ( A. x e. A ( ph -> ps ) -> ( ph -> A. x e. A ps ) )