Metamath Proof Explorer


Theorem rab0

Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 26-Jun-2011) (Proof shortened by JJ, 14-Jul-2021)

Ref Expression
Assertion rab0
|- { x e. (/) | ph } = (/)

Proof

Step Hyp Ref Expression
1 df-rab
 |-  { x e. (/) | ph } = { x | ( x e. (/) /\ ph ) }
2 ab0
 |-  ( { x | ( x e. (/) /\ ph ) } = (/) <-> A. x -. ( x e. (/) /\ ph ) )
3 noel
 |-  -. x e. (/)
4 3 intnanr
 |-  -. ( x e. (/) /\ ph )
5 2 4 mpgbir
 |-  { x | ( x e. (/) /\ ph ) } = (/)
6 1 5 eqtri
 |-  { x e. (/) | ph } = (/)