Metamath Proof Explorer


Theorem rab2ex

Description: A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019) (Revised by AV, 26-Mar-2021)

Ref Expression
Hypotheses rab2ex.1
|- B = { y e. A | ps }
rab2ex.2
|- A e. _V
Assertion rab2ex
|- { x e. B | ph } e. _V

Proof

Step Hyp Ref Expression
1 rab2ex.1
 |-  B = { y e. A | ps }
2 rab2ex.2
 |-  A e. _V
3 1 2 rabex2
 |-  B e. _V
4 3 rabex
 |-  { x e. B | ph } e. _V