Metamath Proof Explorer


Theorem rabab

Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011)

Ref Expression
Assertion rabab
|- { x e. _V | ph } = { x | ph }

Proof

Step Hyp Ref Expression
1 df-rab
 |-  { x e. _V | ph } = { x | ( x e. _V /\ ph ) }
2 vex
 |-  x e. _V
3 2 biantrur
 |-  ( ph <-> ( x e. _V /\ ph ) )
4 3 abbii
 |-  { x | ph } = { x | ( x e. _V /\ ph ) }
5 1 4 eqtr4i
 |-  { x e. _V | ph } = { x | ph }