Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabbi2dva.1 | |- ( ( ph /\ x e. A ) -> ( x e. B <-> ps ) ) |
|
| Assertion | rabbi2dva | |- ( ph -> ( A i^i B ) = { x e. A | ps } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbi2dva.1 | |- ( ( ph /\ x e. A ) -> ( x e. B <-> ps ) ) |
|
| 2 | dfin5 | |- ( A i^i B ) = { x e. A | x e. B } |
|
| 3 | 1 | rabbidva | |- ( ph -> { x e. A | x e. B } = { x e. A | ps } ) |
| 4 | 2 3 | eqtrid | |- ( ph -> ( A i^i B ) = { x e. A | ps } ) |