Metamath Proof Explorer


Theorem rabbid

Description: Version of rabbidv with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019)

Ref Expression
Hypotheses rabbid.n
|- F/ x ph
rabbid.1
|- ( ph -> ( ps <-> ch ) )
Assertion rabbid
|- ( ph -> { x e. A | ps } = { x e. A | ch } )

Proof

Step Hyp Ref Expression
1 rabbid.n
 |-  F/ x ph
2 rabbid.1
 |-  ( ph -> ( ps <-> ch ) )
3 2 adantr
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
4 1 3 rabbida
 |-  ( ph -> { x e. A | ps } = { x e. A | ch } )