Metamath Proof Explorer


Theorem rabbida2

Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rabbida2.1
|- F/ x ph
rabbida2.2
|- ( ph -> A = B )
rabbida2.3
|- ( ph -> ( ps <-> ch ) )
Assertion rabbida2
|- ( ph -> { x e. A | ps } = { x e. B | ch } )

Proof

Step Hyp Ref Expression
1 rabbida2.1
 |-  F/ x ph
2 rabbida2.2
 |-  ( ph -> A = B )
3 rabbida2.3
 |-  ( ph -> ( ps <-> ch ) )
4 2 eleq2d
 |-  ( ph -> ( x e. A <-> x e. B ) )
5 4 3 anbi12d
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) )
6 1 5 abbid
 |-  ( ph -> { x | ( x e. A /\ ps ) } = { x | ( x e. B /\ ch ) } )
7 df-rab
 |-  { x e. A | ps } = { x | ( x e. A /\ ps ) }
8 df-rab
 |-  { x e. B | ch } = { x | ( x e. B /\ ch ) }
9 6 7 8 3eqtr4g
 |-  ( ph -> { x e. A | ps } = { x e. B | ch } )