Metamath Proof Explorer


Theorem rabbida3

Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rabbida3.1
|- F/ x ph
rabbida3.2
|- ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) )
Assertion rabbida3
|- ( ph -> { x e. A | ps } = { x e. B | ch } )

Proof

Step Hyp Ref Expression
1 rabbida3.1
 |-  F/ x ph
2 rabbida3.2
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) )
3 1 2 abbid
 |-  ( ph -> { x | ( x e. A /\ ps ) } = { x | ( x e. B /\ ch ) } )
4 df-rab
 |-  { x e. A | ps } = { x | ( x e. A /\ ps ) }
5 df-rab
 |-  { x e. B | ch } = { x | ( x e. B /\ ch ) }
6 3 4 5 3eqtr4g
 |-  ( ph -> { x e. A | ps } = { x e. B | ch } )