Metamath Proof Explorer


Theorem rabbidaOLD

Description: Obsolete version of rabbida as of 14-Mar-2025. (Contributed by BJ, 27-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rabbidaOLD.n
|- F/ x ph
rabbidaOLD.1
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion rabbidaOLD
|- ( ph -> { x e. A | ps } = { x e. A | ch } )

Proof

Step Hyp Ref Expression
1 rabbidaOLD.n
 |-  F/ x ph
2 rabbidaOLD.1
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
3 2 ex
 |-  ( ph -> ( x e. A -> ( ps <-> ch ) ) )
4 1 3 ralrimi
 |-  ( ph -> A. x e. A ( ps <-> ch ) )
5 rabbi
 |-  ( A. x e. A ( ps <-> ch ) <-> { x e. A | ps } = { x e. A | ch } )
6 4 5 sylib
 |-  ( ph -> { x e. A | ps } = { x e. A | ch } )