Description: Obsolete version of rabbida as of 14-Mar-2025. (Contributed by BJ, 27-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabbidaOLD.n | |- F/ x ph |
|
| rabbidaOLD.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
||
| Assertion | rabbidaOLD | |- ( ph -> { x e. A | ps } = { x e. A | ch } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidaOLD.n | |- F/ x ph |
|
| 2 | rabbidaOLD.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
| 3 | 2 | ex | |- ( ph -> ( x e. A -> ( ps <-> ch ) ) ) |
| 4 | 1 3 | ralrimi | |- ( ph -> A. x e. A ( ps <-> ch ) ) |
| 5 | rabbi | |- ( A. x e. A ( ps <-> ch ) <-> { x e. A | ps } = { x e. A | ch } ) |
|
| 6 | 4 5 | sylib | |- ( ph -> { x e. A | ps } = { x e. A | ch } ) |