Metamath Proof Explorer


Theorem rabbidva2

Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017)

Ref Expression
Hypothesis rabbidva2.1
|- ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) )
Assertion rabbidva2
|- ( ph -> { x e. A | ps } = { x e. B | ch } )

Proof

Step Hyp Ref Expression
1 rabbidva2.1
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) )
2 1 abbidv
 |-  ( ph -> { x | ( x e. A /\ ps ) } = { x | ( x e. B /\ ch ) } )
3 df-rab
 |-  { x e. A | ps } = { x | ( x e. A /\ ps ) }
4 df-rab
 |-  { x e. B | ch } = { x | ( x e. B /\ ch ) }
5 2 3 4 3eqtr4g
 |-  ( ph -> { x e. A | ps } = { x e. B | ch } )