Description: Obsolete proof of rabbidva as of 4-Dec-2023. (Contributed by NM, 28-Nov-2003) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rabbidva.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
Assertion | rabbidvaOLD | |- ( ph -> { x e. A | ps } = { x e. A | ch } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbidva.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
2 | 1 | ralrimiva | |- ( ph -> A. x e. A ( ps <-> ch ) ) |
3 | rabbi | |- ( A. x e. A ( ps <-> ch ) <-> { x e. A | ps } = { x e. A | ch } ) |
|
4 | 2 3 | sylib | |- ( ph -> { x e. A | ps } = { x e. A | ch } ) |