Metamath Proof Explorer


Theorem rabbidvaOLD

Description: Obsolete proof of rabbidva as of 4-Dec-2023. (Contributed by NM, 28-Nov-2003) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis rabbidva.1
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion rabbidvaOLD
|- ( ph -> { x e. A | ps } = { x e. A | ch } )

Proof

Step Hyp Ref Expression
1 rabbidva.1
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
2 1 ralrimiva
 |-  ( ph -> A. x e. A ( ps <-> ch ) )
3 rabbi
 |-  ( A. x e. A ( ps <-> ch ) <-> { x e. A | ps } = { x e. A | ch } )
4 2 3 sylib
 |-  ( ph -> { x e. A | ps } = { x e. A | ch } )