Metamath Proof Explorer


Theorem rabbii

Description: Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv . (Contributed by Peter Mazsa, 1-Nov-2019)

Ref Expression
Hypothesis rabbii.1
|- ( ph <-> ps )
Assertion rabbii
|- { x e. A | ph } = { x e. A | ps }

Proof

Step Hyp Ref Expression
1 rabbii.1
 |-  ( ph <-> ps )
2 1 a1i
 |-  ( x e. A -> ( ph <-> ps ) )
3 2 rabbiia
 |-  { x e. A | ph } = { x e. A | ps }