Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rabbiia.1 | |- ( x e. A -> ( ph <-> ps ) ) |
|
Assertion | rabbiia | |- { x e. A | ph } = { x e. A | ps } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | |- ( x e. A -> ( ph <-> ps ) ) |
|
2 | 1 | pm5.32i | |- ( ( x e. A /\ ph ) <-> ( x e. A /\ ps ) ) |
3 | 2 | abbii | |- { x | ( x e. A /\ ph ) } = { x | ( x e. A /\ ps ) } |
4 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
5 | df-rab | |- { x e. A | ps } = { x | ( x e. A /\ ps ) } |
|
6 | 3 4 5 | 3eqtr4i | |- { x e. A | ph } = { x e. A | ps } |