Metamath Proof Explorer


Theorem rabelpw

Description: A restricted class abstraction is an element of the power set of its restricting set. (Contributed by AV, 9-Oct-2023)

Ref Expression
Assertion rabelpw
|- ( A e. V -> { x e. A | ph } e. ~P A )

Proof

Step Hyp Ref Expression
1 ssrab2
 |-  { x e. A | ph } C_ A
2 elpw2g
 |-  ( A e. V -> ( { x e. A | ph } e. ~P A <-> { x e. A | ph } C_ A ) )
3 1 2 mpbiri
 |-  ( A e. V -> { x e. A | ph } e. ~P A )