Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010) (Revised by BJ, 16-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabeq0 | |- ( { x e. A | ph } = (/) <-> A. x e. A -. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0 | |- ( { x | ( x e. A /\ ph ) } = (/) <-> A. x -. ( x e. A /\ ph ) ) |
|
| 2 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 3 | 2 | eqeq1i | |- ( { x e. A | ph } = (/) <-> { x | ( x e. A /\ ph ) } = (/) ) |
| 4 | raln | |- ( A. x e. A -. ph <-> A. x -. ( x e. A /\ ph ) ) |
|
| 5 | 1 3 4 | 3bitr4i | |- ( { x e. A | ph } = (/) <-> A. x e. A -. ph ) |