Metamath Proof Explorer


Theorem rabeq0

Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010) (Revised by BJ, 16-Jul-2021)

Ref Expression
Assertion rabeq0
|- ( { x e. A | ph } = (/) <-> A. x e. A -. ph )

Proof

Step Hyp Ref Expression
1 ab0
 |-  ( { x | ( x e. A /\ ph ) } = (/) <-> A. x -. ( x e. A /\ ph ) )
2 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
3 2 eqeq1i
 |-  ( { x e. A | ph } = (/) <-> { x | ( x e. A /\ ph ) } = (/) )
4 raln
 |-  ( A. x e. A -. ph <-> A. x -. ( x e. A /\ ph ) )
5 1 3 4 3bitr4i
 |-  ( { x e. A | ph } = (/) <-> A. x e. A -. ph )