Description: Version of rabeqbidva with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabeqbida.nf | |- F/ x ph | |
| rabeqbida.1 | |- ( ph -> A = B ) | ||
| rabeqbida.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) | ||
| Assertion | rabeqbida | |- ( ph -> { x e. A | ps } = { x e. B | ch } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rabeqbida.nf | |- F/ x ph | |
| 2 | rabeqbida.1 | |- ( ph -> A = B ) | |
| 3 | rabeqbida.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) | |
| 4 | 1 3 | rabbida |  |-  ( ph -> { x e. A | ps } = { x e. A | ch } ) | 
| 5 | 1 2 | rabeqd |  |-  ( ph -> { x e. A | ch } = { x e. B | ch } ) | 
| 6 | 4 5 | eqtrd |  |-  ( ph -> { x e. A | ps } = { x e. B | ch } ) |