Metamath Proof Explorer


Theorem rabeqbidva

Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses rabeqbidva.1
|- ( ph -> A = B )
rabeqbidva.2
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion rabeqbidva
|- ( ph -> { x e. A | ps } = { x e. B | ch } )

Proof

Step Hyp Ref Expression
1 rabeqbidva.1
 |-  ( ph -> A = B )
2 rabeqbidva.2
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
3 2 rabbidva
 |-  ( ph -> { x e. A | ps } = { x e. A | ch } )
4 1 rabeqdv
 |-  ( ph -> { x e. A | ch } = { x e. B | ch } )
5 3 4 eqtrd
 |-  ( ph -> { x e. A | ps } = { x e. B | ch } )