Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017) Remove DV conditions. (Revised by GG, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabeqbidva.1 | |- ( ph -> A = B ) |
|
| rabeqbidva.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
||
| Assertion | rabeqbidva | |- ( ph -> { x e. A | ps } = { x e. B | ch } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbidva.1 | |- ( ph -> A = B ) |
|
| 2 | rabeqbidva.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
| 3 | 2 | rabbidva | |- ( ph -> { x e. A | ps } = { x e. A | ch } ) |
| 4 | 1 | eleq2d | |- ( ph -> ( x e. A <-> x e. B ) ) |
| 5 | 4 | anbi1d | |- ( ph -> ( ( x e. A /\ ch ) <-> ( x e. B /\ ch ) ) ) |
| 6 | 5 | rabbidva2 | |- ( ph -> { x e. A | ch } = { x e. B | ch } ) |
| 7 | 3 6 | eqtrd | |- ( ph -> { x e. A | ps } = { x e. B | ch } ) |