Description: A restricted class abstraction equals the restricting class if its condition follows from the membership of the free setvar variable in the restricting class. (Contributed by AV, 20-Apr-2022) (Proof shortened by SN, 15-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rabeqc.1 | |- ( x e. A -> ph ) |
|
Assertion | rabeqc | |- { x e. A | ph } = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqc.1 | |- ( x e. A -> ph ) |
|
2 | 1 | adantl | |- ( ( T. /\ x e. A ) -> ph ) |
3 | 2 | rabeqcda | |- ( T. -> { x e. A | ph } = A ) |
4 | 3 | mptru | |- { x e. A | ph } = A |