Description: When ps is always true in a context, a restricted class abstraction is equal to the restricting class. Deduction form of rabeqc . (Contributed by Steven Nguyen, 7-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabeqcda.1 | |- ( ( ph /\ x e. A ) -> ps ) |
|
| Assertion | rabeqcda | |- ( ph -> { x e. A | ps } = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqcda.1 | |- ( ( ph /\ x e. A ) -> ps ) |
|
| 2 | df-rab | |- { x e. A | ps } = { x | ( x e. A /\ ps ) } |
|
| 3 | 1 | ex | |- ( ph -> ( x e. A -> ps ) ) |
| 4 | 3 | pm4.71d | |- ( ph -> ( x e. A <-> ( x e. A /\ ps ) ) ) |
| 5 | 4 | eqabdv | |- ( ph -> A = { x | ( x e. A /\ ps ) } ) |
| 6 | 2 5 | eqtr4id | |- ( ph -> { x e. A | ps } = A ) |