Metamath Proof Explorer


Theorem rabeqf

Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004)

Ref Expression
Hypotheses rabeqf.1
|- F/_ x A
rabeqf.2
|- F/_ x B
Assertion rabeqf
|- ( A = B -> { x e. A | ph } = { x e. B | ph } )

Proof

Step Hyp Ref Expression
1 rabeqf.1
 |-  F/_ x A
2 rabeqf.2
 |-  F/_ x B
3 1 2 nfeq
 |-  F/ x A = B
4 eleq2
 |-  ( A = B -> ( x e. A <-> x e. B ) )
5 4 anbi1d
 |-  ( A = B -> ( ( x e. A /\ ph ) <-> ( x e. B /\ ph ) ) )
6 3 5 abbid
 |-  ( A = B -> { x | ( x e. A /\ ph ) } = { x | ( x e. B /\ ph ) } )
7 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
8 df-rab
 |-  { x e. B | ph } = { x | ( x e. B /\ ph ) }
9 6 7 8 3eqtr4g
 |-  ( A = B -> { x e. A | ph } = { x e. B | ph } )