Description: Conditions for a restricted class abstraction to be a singleton. (Contributed by AV, 18-Apr-2019) (Proof shortened by AV, 26-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabeqsn | |- ( { x e. V | ph } = { X } <-> A. x ( ( x e. V /\ ph ) <-> x = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. V | ph } = { x | ( x e. V /\ ph ) } |
|
| 2 | 1 | eqeq1i | |- ( { x e. V | ph } = { X } <-> { x | ( x e. V /\ ph ) } = { X } ) |
| 3 | absn | |- ( { x | ( x e. V /\ ph ) } = { X } <-> A. x ( ( x e. V /\ ph ) <-> x = X ) ) |
|
| 4 | 2 3 | bitri | |- ( { x e. V | ph } = { X } <-> A. x ( ( x e. V /\ ph ) <-> x = X ) ) |