Metamath Proof Explorer


Theorem rabeqsn

Description: Conditions for a restricted class abstraction to be a singleton. (Contributed by AV, 18-Apr-2019) (Proof shortened by AV, 26-Aug-2022)

Ref Expression
Assertion rabeqsn
|- ( { x e. V | ph } = { X } <-> A. x ( ( x e. V /\ ph ) <-> x = X ) )

Proof

Step Hyp Ref Expression
1 df-rab
 |-  { x e. V | ph } = { x | ( x e. V /\ ph ) }
2 1 eqeq1i
 |-  ( { x e. V | ph } = { X } <-> { x | ( x e. V /\ ph ) } = { X } )
3 absn
 |-  ( { x | ( x e. V /\ ph ) } = { X } <-> A. x ( ( x e. V /\ ph ) <-> x = X ) )
4 2 3 bitri
 |-  ( { x e. V | ph } = { X } <-> A. x ( ( x e. V /\ ph ) <-> x = X ) )