| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rabeqsnd.0 |  |-  ( x = B -> ( ps <-> ch ) ) | 
						
							| 2 |  | rabeqsnd.1 |  |-  ( ph -> B e. A ) | 
						
							| 3 |  | rabeqsnd.2 |  |-  ( ph -> ch ) | 
						
							| 4 |  | rabeqsnd.3 |  |-  ( ( ( ph /\ x e. A ) /\ ps ) -> x = B ) | 
						
							| 5 | 4 | expl |  |-  ( ph -> ( ( x e. A /\ ps ) -> x = B ) ) | 
						
							| 6 | 5 | alrimiv |  |-  ( ph -> A. x ( ( x e. A /\ ps ) -> x = B ) ) | 
						
							| 7 | 2 3 | jca |  |-  ( ph -> ( B e. A /\ ch ) ) | 
						
							| 8 | 7 | a1d |  |-  ( ph -> ( x = B -> ( B e. A /\ ch ) ) ) | 
						
							| 9 | 8 | alrimiv |  |-  ( ph -> A. x ( x = B -> ( B e. A /\ ch ) ) ) | 
						
							| 10 |  | eleq1 |  |-  ( x = B -> ( x e. A <-> B e. A ) ) | 
						
							| 11 | 10 1 | anbi12d |  |-  ( x = B -> ( ( x e. A /\ ps ) <-> ( B e. A /\ ch ) ) ) | 
						
							| 12 | 11 | pm5.74i |  |-  ( ( x = B -> ( x e. A /\ ps ) ) <-> ( x = B -> ( B e. A /\ ch ) ) ) | 
						
							| 13 | 12 | albii |  |-  ( A. x ( x = B -> ( x e. A /\ ps ) ) <-> A. x ( x = B -> ( B e. A /\ ch ) ) ) | 
						
							| 14 | 9 13 | sylibr |  |-  ( ph -> A. x ( x = B -> ( x e. A /\ ps ) ) ) | 
						
							| 15 | 6 14 | jca |  |-  ( ph -> ( A. x ( ( x e. A /\ ps ) -> x = B ) /\ A. x ( x = B -> ( x e. A /\ ps ) ) ) ) | 
						
							| 16 |  | albiim |  |-  ( A. x ( ( x e. A /\ ps ) <-> x = B ) <-> ( A. x ( ( x e. A /\ ps ) -> x = B ) /\ A. x ( x = B -> ( x e. A /\ ps ) ) ) ) | 
						
							| 17 | 15 16 | sylibr |  |-  ( ph -> A. x ( ( x e. A /\ ps ) <-> x = B ) ) | 
						
							| 18 |  | rabeqsn |  |-  ( { x e. A | ps } = { B } <-> A. x ( ( x e. A /\ ps ) <-> x = B ) ) | 
						
							| 19 | 17 18 | sylibr |  |-  ( ph -> { x e. A | ps } = { B } ) |