Metamath Proof Explorer


Theorem rabexd

Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 . (Contributed by AV, 16-Jul-2019)

Ref Expression
Hypotheses rabexd.1
|- B = { x e. A | ps }
rabexd.2
|- ( ph -> A e. V )
Assertion rabexd
|- ( ph -> B e. _V )

Proof

Step Hyp Ref Expression
1 rabexd.1
 |-  B = { x e. A | ps }
2 rabexd.2
 |-  ( ph -> A e. V )
3 rabexg
 |-  ( A e. V -> { x e. A | ps } e. _V )
4 2 3 syl
 |-  ( ph -> { x e. A | ps } e. _V )
5 1 4 eqeltrid
 |-  ( ph -> B e. _V )