Metamath Proof Explorer


Theorem rabexg

Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999) (Proof shortened by BJ, 24-Jul-2025)

Ref Expression
Assertion rabexg
|- ( A e. V -> { x e. A | ph } e. _V )

Proof

Step Hyp Ref Expression
1 rabelpw
 |-  ( A e. V -> { x e. A | ph } e. ~P A )
2 1 elexd
 |-  ( A e. V -> { x e. A | ph } e. _V )