Description: A version of rabexg using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabexgf.1 | |- F/_ x A | |
| Assertion | rabexgf | |- ( A e. V -> { x e. A | ph } e. _V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rabexgf.1 | |- F/_ x A | |
| 2 | df-rab |  |-  { x e. A | ph } = { x | ( x e. A /\ ph ) } | |
| 3 | simpl | |- ( ( x e. A /\ ph ) -> x e. A ) | |
| 4 | 3 | ss2abi |  |-  { x | ( x e. A /\ ph ) } C_ { x | x e. A } | 
| 5 | 1 | abid2f |  |-  { x | x e. A } = A | 
| 6 | 4 5 | sseqtri |  |-  { x | ( x e. A /\ ph ) } C_ A | 
| 7 | 2 6 | eqsstri |  |-  { x e. A | ph } C_ A | 
| 8 | ssexg |  |-  ( ( { x e. A | ph } C_ A /\ A e. V ) -> { x e. A | ph } e. _V ) | |
| 9 | 7 8 | mpan |  |-  ( A e. V -> { x e. A | ph } e. _V ) |