Metamath Proof Explorer


Theorem rabexgf

Description: A version of rabexg using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypothesis rabexgf.1
|- F/_ x A
Assertion rabexgf
|- ( A e. V -> { x e. A | ph } e. _V )

Proof

Step Hyp Ref Expression
1 rabexgf.1
 |-  F/_ x A
2 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
3 simpl
 |-  ( ( x e. A /\ ph ) -> x e. A )
4 3 ss2abi
 |-  { x | ( x e. A /\ ph ) } C_ { x | x e. A }
5 1 abid2f
 |-  { x | x e. A } = A
6 4 5 sseqtri
 |-  { x | ( x e. A /\ ph ) } C_ A
7 2 6 eqsstri
 |-  { x e. A | ph } C_ A
8 ssexg
 |-  ( ( { x e. A | ph } C_ A /\ A e. V ) -> { x e. A | ph } e. _V )
9 7 8 mpan
 |-  ( A e. V -> { x e. A | ph } e. _V )