Metamath Proof Explorer


Theorem rabexgfGS

Description: Separation Scheme in terms of a restricted class abstraction. To be removed in profit of Glauco's equivalent version. (Contributed by Thierry Arnoux, 11-May-2017)

Ref Expression
Hypothesis rabexgfGS.1
|- F/_ x A
Assertion rabexgfGS
|- ( A e. V -> { x e. A | ph } e. _V )

Proof

Step Hyp Ref Expression
1 rabexgfGS.1
 |-  F/_ x A
2 nfrab1
 |-  F/_ x { x e. A | ph }
3 2 1 dfss2f
 |-  ( { x e. A | ph } C_ A <-> A. x ( x e. { x e. A | ph } -> x e. A ) )
4 rabidim1
 |-  ( x e. { x e. A | ph } -> x e. A )
5 3 4 mpgbir
 |-  { x e. A | ph } C_ A
6 elex
 |-  ( A e. V -> A e. _V )
7 ssexg
 |-  ( ( { x e. A | ph } C_ A /\ A e. _V ) -> { x e. A | ph } e. _V )
8 5 6 7 sylancr
 |-  ( A e. V -> { x e. A | ph } e. _V )