Metamath Proof Explorer


Theorem rabid2

Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Assertion rabid2
|- ( A = { x e. A | ph } <-> A. x e. A ph )

Proof

Step Hyp Ref Expression
1 abeq2
 |-  ( A = { x | ( x e. A /\ ph ) } <-> A. x ( x e. A <-> ( x e. A /\ ph ) ) )
2 pm4.71
 |-  ( ( x e. A -> ph ) <-> ( x e. A <-> ( x e. A /\ ph ) ) )
3 2 albii
 |-  ( A. x ( x e. A -> ph ) <-> A. x ( x e. A <-> ( x e. A /\ ph ) ) )
4 1 3 bitr4i
 |-  ( A = { x | ( x e. A /\ ph ) } <-> A. x ( x e. A -> ph ) )
5 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
6 5 eqeq2i
 |-  ( A = { x e. A | ph } <-> A = { x | ( x e. A /\ ph ) } )
7 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
8 4 6 7 3bitr4i
 |-  ( A = { x e. A | ph } <-> A. x e. A ph )