Metamath Proof Explorer


Theorem rabid2f

Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) (Revised by Thierry Arnoux, 13-Mar-2017)

Ref Expression
Hypothesis rabid2f.1
|- F/_ x A
Assertion rabid2f
|- ( A = { x e. A | ph } <-> A. x e. A ph )

Proof

Step Hyp Ref Expression
1 rabid2f.1
 |-  F/_ x A
2 1 abeq2f
 |-  ( A = { x | ( x e. A /\ ph ) } <-> A. x ( x e. A <-> ( x e. A /\ ph ) ) )
3 pm4.71
 |-  ( ( x e. A -> ph ) <-> ( x e. A <-> ( x e. A /\ ph ) ) )
4 3 albii
 |-  ( A. x ( x e. A -> ph ) <-> A. x ( x e. A <-> ( x e. A /\ ph ) ) )
5 2 4 bitr4i
 |-  ( A = { x | ( x e. A /\ ph ) } <-> A. x ( x e. A -> ph ) )
6 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
7 6 eqeq2i
 |-  ( A = { x e. A | ph } <-> A = { x | ( x e. A /\ ph ) } )
8 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
9 5 7 8 3bitr4i
 |-  ( A = { x e. A | ph } <-> A. x e. A ph )