Metamath Proof Explorer


Theorem rabidim2

Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Assertion rabidim2
|- ( x e. { x e. A | ph } -> ph )

Proof

Step Hyp Ref Expression
1 rabid
 |-  ( x e. { x e. A | ph } <-> ( x e. A /\ ph ) )
2 1 simprbi
 |-  ( x e. { x e. A | ph } -> ph )