Metamath Proof Explorer


Theorem rabnc

Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011)

Ref Expression
Assertion rabnc
|- ( { x e. A | ph } i^i { x e. A | -. ph } ) = (/)

Proof

Step Hyp Ref Expression
1 inrab
 |-  ( { x e. A | ph } i^i { x e. A | -. ph } ) = { x e. A | ( ph /\ -. ph ) }
2 pm3.24
 |-  -. ( ph /\ -. ph )
3 2 rgenw
 |-  A. x e. A -. ( ph /\ -. ph )
4 rabeq0
 |-  ( { x e. A | ( ph /\ -. ph ) } = (/) <-> A. x e. A -. ( ph /\ -. ph ) )
5 3 4 mpbir
 |-  { x e. A | ( ph /\ -. ph ) } = (/)
6 1 5 eqtri
 |-  ( { x e. A | ph } i^i { x e. A | -. ph } ) = (/)