Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | rabnc | |- ( { x e. A | ph } i^i { x e. A | -. ph } ) = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inrab | |- ( { x e. A | ph } i^i { x e. A | -. ph } ) = { x e. A | ( ph /\ -. ph ) } |
|
2 | pm3.24 | |- -. ( ph /\ -. ph ) |
|
3 | 2 | rgenw | |- A. x e. A -. ( ph /\ -. ph ) |
4 | rabeq0 | |- ( { x e. A | ( ph /\ -. ph ) } = (/) <-> A. x e. A -. ( ph /\ -. ph ) ) |
|
5 | 3 4 | mpbir | |- { x e. A | ( ph /\ -. ph ) } = (/) |
6 | 1 5 | eqtri | |- ( { x e. A | ph } i^i { x e. A | -. ph } ) = (/) |