Metamath Proof Explorer


Theorem rabrabiOLD

Description: Obsolete version of rabrabi as of 12-Oct-2024. (Contributed by AV, 2-Aug-2022) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis rabrabiOLD.1
|- ( x = y -> ( ch <-> ph ) )
Assertion rabrabiOLD
|- { x e. { y e. A | ph } | ps } = { x e. A | ( ch /\ ps ) }

Proof

Step Hyp Ref Expression
1 rabrabiOLD.1
 |-  ( x = y -> ( ch <-> ph ) )
2 1 cbvrabv
 |-  { x e. A | ch } = { y e. A | ph }
3 2 rabeqi
 |-  { x e. { x e. A | ch } | ps } = { x e. { y e. A | ph } | ps }
4 rabrab
 |-  { x e. { x e. A | ch } | ps } = { x e. A | ( ch /\ ps ) }
5 3 4 eqtr3i
 |-  { x e. { y e. A | ph } | ps } = { x e. A | ( ch /\ ps ) }