| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rabsnifsb |
|- { x e. { A } | ph } = if ( [. A / x ]. ph , { A } , (/) ) |
| 2 |
1
|
eqeq2i |
|- ( M = { x e. { A } | ph } <-> M = if ( [. A / x ]. ph , { A } , (/) ) ) |
| 3 |
|
ifeqor |
|- ( if ( [. A / x ]. ph , { A } , (/) ) = { A } \/ if ( [. A / x ]. ph , { A } , (/) ) = (/) ) |
| 4 |
|
orcom |
|- ( ( if ( [. A / x ]. ph , { A } , (/) ) = { A } \/ if ( [. A / x ]. ph , { A } , (/) ) = (/) ) <-> ( if ( [. A / x ]. ph , { A } , (/) ) = (/) \/ if ( [. A / x ]. ph , { A } , (/) ) = { A } ) ) |
| 5 |
3 4
|
mpbi |
|- ( if ( [. A / x ]. ph , { A } , (/) ) = (/) \/ if ( [. A / x ]. ph , { A } , (/) ) = { A } ) |
| 6 |
|
eqeq1 |
|- ( M = if ( [. A / x ]. ph , { A } , (/) ) -> ( M = (/) <-> if ( [. A / x ]. ph , { A } , (/) ) = (/) ) ) |
| 7 |
|
eqeq1 |
|- ( M = if ( [. A / x ]. ph , { A } , (/) ) -> ( M = { A } <-> if ( [. A / x ]. ph , { A } , (/) ) = { A } ) ) |
| 8 |
6 7
|
orbi12d |
|- ( M = if ( [. A / x ]. ph , { A } , (/) ) -> ( ( M = (/) \/ M = { A } ) <-> ( if ( [. A / x ]. ph , { A } , (/) ) = (/) \/ if ( [. A / x ]. ph , { A } , (/) ) = { A } ) ) ) |
| 9 |
5 8
|
mpbiri |
|- ( M = if ( [. A / x ]. ph , { A } , (/) ) -> ( M = (/) \/ M = { A } ) ) |
| 10 |
2 9
|
sylbi |
|- ( M = { x e. { A } | ph } -> ( M = (/) \/ M = { A } ) ) |