Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006) (Proof shortened by AV, 26-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabsn | |- ( B e. A -> { x e. A | x = B } = { B } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 | |- ( x = B -> ( x e. A <-> B e. A ) ) | |
| 2 | 1 | pm5.32ri | |- ( ( x e. A /\ x = B ) <-> ( B e. A /\ x = B ) ) | 
| 3 | 2 | baib | |- ( B e. A -> ( ( x e. A /\ x = B ) <-> x = B ) ) | 
| 4 | 3 | alrimiv | |- ( B e. A -> A. x ( ( x e. A /\ x = B ) <-> x = B ) ) | 
| 5 | rabeqsn |  |-  ( { x e. A | x = B } = { B } <-> A. x ( ( x e. A /\ x = B ) <-> x = B ) ) | |
| 6 | 4 5 | sylibr |  |-  ( B e. A -> { x e. A | x = B } = { B } ) |